1 AMAT

Recall that AMAT stands for Average Memory Access Time. The main formula for it is:

\[\text{AMAT} = \text{Hit Time} + \text{Miss Rate} \times \text{Miss Penalty} \]

In a multi-level cache, there are two types of miss rates that we consider for each level.

- **Global**: Calculated as the number of accesses that missed at that level divided by the total number of accesses to the cache system.
- **Local**: Calculated as the number of accesses that missed at that level divided by the total number of accesses to that cache level.

1.1 An L2$, out of 100 total accesses to the cache system, missed 20 times. What is the global miss rate of L2$?

\[
\frac{20}{100} = 20\%
\]

1.2 If L1$ had a miss rate of 50%, what is the local miss rate of L2$?

\[
\frac{20}{50\% \times 100} = \frac{20}{50} = 40\%. \text{ We know that L2$ is accessed when L1$ misses, so if L1$ misses 50\% of the time, that means we access L2$ 50 times.}
\]

Suppose your system consists of:

1. An L1$ that has a hit time of 2 cycles and has a local miss rate of 20%
2. An L2$ that has a hit time of 15 cycles and has a global miss rate of 5%
3. Main memory where accesses take 100 cycles

1.3 What is the local miss rate of L2$?

\[
\text{L2$ Local miss rate} = \frac{\text{Global Miss Rate}}{\text{L1$ Miss Rate}} = \frac{5\%}{20\%} = 0.25 = 25\%
\]

1.4 What is the AMAT of the system?

\[
\text{AMAT} = 2 + 20\% \times 15 + 5\% \times 100 = 10 \text{ cycles (using global miss rates)}
\]

Alternatively, \[
\text{AMAT} = 2 + 20\% \times (15 + 25\% \times 100) = 10 \text{ cycles}
\]

1.5 Suppose we want to reduce the AMAT of the system to 8 cycles or lower by adding in a L3$. If the L3$ has a local miss rate of 30%, what is the largest hit time that the L3$ can have?

Let \(H = \text{hit time of the cache. Using the AMAT equation, we can write:}

\[
2 + 20\% \times (15 + 25\% \times (H + 30\% \times 100)) \leq 8
\]

Solving for \(H \), we find that \(H \leq 30 \). So the largest hit time is 30 cycles.
2 Data-Level Parallelism

The idea central to data level parallelism is vectorized calculation: applying operations to multiple items (which are part of a single vector) at the same time.

Some machines with x86 architectures have special, wider registers, that can hold 128, 256, or even 512 bits. Intel intrinsics (Intel proprietary technology) allow us to use these wider registers to harness the power of DLP in C code.

Below is a small selection of the available Intel intrinsic instructions. All of them perform operations using 128-bit registers. The type _m128i is used when these registers hold 4 ints, 8 shorts or 16 chars; _m128d is used for 2 double precision floats, and _m128 is used for 4 single precision floats. Where you see “epiXX”, epi stands for extended packed integer, and XX is the number of bits in the integer. “epi32” for example indicates that we are treating the 128-bit register as a pack of 4 32-bit integers.

- __m128i _mm_set1_epi32(int i):
 Set the four signed 32-bit integers within the vector to i.
- __m128i _mm_loadu_si128(__m128i *p):
 Return the 128-bit vector stored at pointer p.
- __m128i _mm_mullo_epi32(__m128 a, __m128 b):
 Return vector \((a_0 \cdot b_0, a_1 \cdot b_1, a_2 \cdot b_2, a_3 \cdot b_3)\).
- __m128i _mm_add_epi32(__m128 a, __m128 b):
 Return vector \((a_0 + b_0, a_1 + b_1, a_2 + b_2, a_3 + b_3)\)
- void _mm_storeu_si128(__m128i *p, __m128i a):
 Store 128-bit vector a at pointer p.
- __m128i _mm_and_si128(__m128i a, __m128i b):
 Perform a bitwise AND of 128 bits in a and b, and return the result.
- __m128i _mm_cmpeq_epi32(__m128i a, __m128i b):
 Compare packed 32-bit integers in a and b for equality, set return vector to 0xFFFFFFFF if equal and 0 if not.

You have an array of 32-bit integers and a 128-bit vector as follows:

```c
int arr[8] = {1, 2, 3, 4, 5, 6, 7, 8};
__m128i vector = _mm_loadu_si128((__m128i *) arr);
```

For each of the following tasks, fill in the correct arguments for each SIMD instruction, and where necessary, fill in the appropriate SIMD function. Assume they happen independently, i.e. the results of Part (a) do not at all affect Part (b).

(a) Multiply vector by itself, and set vector to the result.
vector = _mm_mullo_epi32(vector, vector);

(b) Add 1 to each of the first 4 elements of the arr, resulting in arr = {2, 3, 4, 5, 6, 7, 8}

__m128i vector_ones = _mm_set1_epi32(1);
__m128i result = _mm_add_epi32(vector, vector_ones);
_mm_storeu_si128((__m128i *) arr, result);

Notice: In this and the following solutions, we are using the unaligned versions of the commands that interface with memory (i.e. storeu/loadu vs. store/load). This is because the store/load commands require that the address we are loading at is aligned at some byte boundary (and not necessarily just word-aligned), whereas the unaligned versions have no such requirements. For instance, _mm_store_si128 needs the address to be aligned on a 16-byte boundary (i.e. is a multiple of 16). There is extra work that needs to be done to achieve these alignment requirements, so for this class, we just use the unaligned variants.

(c) Add the second half of the array to the first half of the array, resulting in arr = {1 + 5, 2 + 6, 3 + 7, 4 + 8, 5, 6, 7, 8} = {6, 8, 10, 12, 5, 6, 7, 8}

__m128i result = _mm_add_epi32(_mm_loadu_si128((__m128i *) (arr + 4)), vector);
_mm_storeu_si128((m128i*) arr, result);

(d) Set every element of the array that is not equal to 5 to 0, resulting in arr = {0, 0, 0, 0, 5, 0, 0, 0}. Remember that the first half of the array has already been loaded into vector.

__m128i fives = _mm_set1_epi32(5);
__m128i mask = _mm_cmpeq_epi32(vector, fives);
__m128i result = _mm_and_si128(mask, vector);
_mm_storeu_si128((__m128i *) arr, result);
vector = _mm_loadu_si128((__m128i *) (arr + 4));
mask = _mm_cmpeq_epi32(vector, fives);
result = _mm_and_si128(mask, vector);
_mm_storeu_si128((__m128i *) (arr + 4), result);

2.2 Implement the following function, which returns the product of all of the elements in an array.

```
static int product_naive(int n, int *a) {
    int product = 1;
    for (int i = 0; i < n; i++) {
        product *= a[i];
    }
    return product;
```
static int product_vectorized(int n, int *a) {
 int result[4];
 __m128i prod_v = __mm_set1_epi32(1);
 for (int i = 0; i < n/4 * 4; i += 4) { // Vectorized loop
 prod_v = __mm_mullo_epi32(prod_v, __mm_loadu_si128((__m128i *) (a + i)));
 }
 __mm_storeu_si128((__m128i *) result, prod_v);
 for (int i = n/4 * 4; i < n; i++) { // Handle tail case
 result[0] *= a[i];
 }
 return result[0] * result[1] * result[2] * result[3];
}

3 Floating Point

The IEEE 754 standard defines a binary representation for floating point values using three fields.

- The **sign** determines the sign of the number (0 for positive, 1 for negative).
- The **exponent** is in **biased notation**. For instance, the bias is 127 for single-precision floating point numbers.
- The **significand** or **mantissa** is akin to unsigned integers, but used to store a fraction instead of an integer.

The below table shows the bit breakdown for the single precision (32-bit) representation. The leftmost bit is the MSB and the rightmost bit is the LSB.

<table>
<thead>
<tr>
<th>Sign</th>
<th>Exponent</th>
<th>Mantissa/Significand/Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8</td>
<td>23</td>
</tr>
</tbody>
</table>

For normalized floats:

\[
\text{Value} = (-1)^{\text{Sign}} \cdot 2^{\text{Exp} - \text{Bias}} \cdot 1.\text{Significand}_2
\]

For denormalized floats:

\[
\text{Value} = (-1)^{\text{Sign}} \cdot 2^{\text{Exp} - \text{Bias} + 1} \cdot 0.\text{Significand}_2
\]

<table>
<thead>
<tr>
<th>Exponent</th>
<th>Significand</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Anything</td>
<td>Denorm</td>
</tr>
<tr>
<td>1-254</td>
<td>Anything</td>
<td>Normal</td>
</tr>
<tr>
<td>255</td>
<td>0</td>
<td>Infinity</td>
</tr>
<tr>
<td>255</td>
<td>Nonzero</td>
<td>NaN</td>
</tr>
</tbody>
</table>

Note that in the above table, our exponent has values from 0 to 255. When translating between binary and decimal floating point values, we must remember that there is a bias for the exponent.

3.1 How many zeroes can be represented using a float?
3.2 What is the largest finite positive value that can be stored using a single precision float?

0x7F7FFFFF = (1 + (1 − 2−23)) * 2^127

The mantissa for the largest value will be 23 1’s. This corresponds to a value of

.11...1 = 2^−1 + 2^−2 + ... + 2^−23 = 2^−23(2^{22} + 2^{21} + ... + 1)

Here, we apply the formula that \(\sum_{i=0}^{n-1}2^i = 2^n - 1\), so we have that the mantissa is

2^−23(2^{22} + 2^{21} + ... + 1) = 2^−23(2^{23} - 1) = 1 - 2^−23

We have 1 + (1 − 2−23) since we this is a normalized number and thus has a 1 to the left of the decimal point.

3.3 What is the smallest positive value that can be stored using a single precision float?

0x00000001 = 2^−23 * 2^−126

3.4 What is the smallest positive normalized value that can be stored using a single precision float?

0x00800000 = 2^−126

3.5 Cover the following single-precision floating point numbers from binary to decimal or from decimal to binary. You may leave your answer as an expression.

- 0x00000000
 - 0
- 0x00000F00
 - 8.25
- 0x41040000
 - 39.5625
- 0x421E4000
 - 0x421E4000
- 0xFF94BEEF
 - NaN
- 0xFF800000
 - -∞
- 39.5625
 - 0x421E4000
- 0x00000F00
 - (2^−12 + 2^−13 + 2^−14 + 2^−15) * 2^−126
- 0xFF800000
 - 0xFF800000