1 MapReduce

For each problem below, write pseudocode to complete the implementations. Tips:

- The input to each MapReduce job is given by the signature of map().
- emit(key k, value v) outputs the key-value pair (k, v).
- for var in list can be used to iterate through Iterables or you can call the hasNext() and next() functions.
- Usable data types: int, float, String. You may also use lists and custom data types composed of the aforementioned types.
- intersection(list1, list2) returns a list of the intersection of list1, list2.

1.1 Given a set of coins and each coin’s owner, compute the number of coins of each denomination that a person has.

Declare any custom data types here:

CoinPair:
String person
String coinType

map(__________, ____________):
map(String person, String coinType):
key = (person, coinType)
emit(key, 1)

reduce(__________, ____________):
reduce(CoinPair key, Iterable<int> values):
total = 0
for count in values:
total += count
emit(key, total)

1.2 Using the output of the first MapReduce, compute each person’s amount of money.

valueOfCoin(String coinType) returns a float corresponding to the dollar value of the coin.

map(__________, ____________):
map(CoinPair key, int amount):
emit(key.person,
 valueOfCoin(key.coinType) * amount)

reduce(__________, ____________):
reduce(String key, Iterable<float> values):
total = 0
for amount in values:
total += amount
emit(key, total)
2 Spark

Resilient Distributed Datasets (RDD) are the primary abstraction of a distributed collection of items

Transforms \(RDD \rightarrow RDD \)

- **map**\((f)\)** Return a new dataset formed by calling \(f \) on each source element.
- **flatMap**\((f)\)** Similar to map, but each input item can be mapped to 0 or more output items (so \(f \) should return a sequence rather than a single item).
- **reduceByKey**\((f)\)** When called on a dataset of \((K, V)\) pairs, returns a dataset of \((K, V)\) pairs where the values for each key are aggregated using the given reduce function \(f \), which must be of type \((V, V) \rightarrow V\).

Actions \(RDD \rightarrow Value \)

- **reduce**\((f)\)** Aggregate the elements of the dataset regardless of keys using a function \(f \).

Call `sc.parallelize(data)` to parallelize a Python collection, `data`.

```python
1 coinData = sc.parallelize(coinPairs)

out1 = coinData.map(lambda (k1, k2): ((k1, k2), 1))
    .reduceByKey(lambda v1, v2: v1 + v2)

out2 = out1.map(lambda (k, v): (k[0], v * valueOfCoin(k[1])))
    .reduceByKey(lambda v1, v2: v1 + v2)
```

3 Warehouse-Scale Computing

Sources speculate Google has over 1 million servers. Assume each of the 1 million servers draw an average of 200W, the PUE is 1.5, and that Google pays an average of 6 cents per kilowatt-hour for datacenter electricity.

3.1 Estimate Google’s annual power bill for its datacenters.

\[
1.5 \times 10^6 \text{ servers} \times 0.2\text{kW/server} \times 0.06/\text{kW-hr} \times 8760 \text{ hrs/yr} \approx \$157.68 \text{ M/year}
\]

3.2 Google reduced the PUE of a 50,000-machine datacenter from 1.5 to 1.25 without decreasing the power supplied to the servers. What’s the cost savings per year?

\[
PUE = \frac{\text{Total building power}}{\text{IT equipment power}} \quad \Rightarrow \quad \text{Savings} \propto (PUE_{old} - PUE_{new}) \times \text{IT equipment power} \times (1.5 - 1.25) \times 50000 \text{ servers} \times 0.2\text{kW/server} \times 0.06/\text{kW-hr} \times 8760\text{hrs/yr} \approx \$1.314 \text{ M/year}
\]
4 MapReduce/Spark Practice: Optimize Your GPA

4.1 Given the student’s name and course taken, output their name and total GPA.

Declare any custom data types here:

CourseData:
 int courseID
 float studentGrade // a number from 0-4

map(________________, ________________):
 map(String student, CourseData value):
 emit(student, value.studentGrade)

reduce(________________, ________________):
 reduce(String key, Iterable<float> values):
 totalPts = 0
 totalClasses = 0
 for grade in values:
 totalPts += grade
 totalClasses += 1
 emit(key, totalPts / totalClasses)

4.2 Solve the problem above using Spark.

The type of students is a list of (studentName, courseData) pairs.

studentsData = sc.parallelize(students)
out = studentsData.map(lambda (k, v): (k, (v.studentGrade, __1__))).
 reduceByKey(lambda v1, v2: (v1[0] + v2[0], v1[1] + v2[1])).
 map(lambda (k, v): (k, v[0] / v[1]))
5 MapReduce/Spark Practice: Optimize the Friend Zone

5.1 Given a person’s unique int ID and a list of the IDs of their friends, compute the list of mutual friends between each pair of friends in a social network. You have access to the intersection function, which takes in two lists finds the set of elements that appear in both lists.

Declare any custom data types here:

```python
FriendPair:
    int friendOne
    int friendTwo
```

```python
map(int personID, list<int> friendIDs):
    for fID in friendIDs:
        if (personID < fID):
            friendPair = (personID, fID)
        else:
            friendPair = (fID, personID)
        emit(friendPair, friendIDs)
```

```python
reduce(FriendPair key, Iterable list<int> values):
    mutualFriends = intersection(values.next(), values.next())
    emit(key, mutualFriends)
```

5.2 Solve the problem above using Spark.

The type of persons is a list of (personID, list(friendID) pairs.

```python
def genFriendPairAndValue(pID, fIDs):
    return [((pID, fID), fIDs) if pID < fID else (fID, pID) for fID in fIDs]
```

```python
def intersection(l1, l2):
    return [x for x in l1 if x in l2]
```

```python
personsData = sc.parallelize(persons)
out = personsData.flatMap(lambda (k, v): genFriendPairAndValue(k, v))
    .reduceByKey(lambda v1, v2: intersection(v1, v2))
```