1 Pre-Check

This section is designed as a conceptual check for you to determine if you conceptually understand and have any misconceptions about this topic. Please answer true/false to the following questions, and include an explanation:

1.1 The idea of floating point is to use the ability to move the radix (decimal) point wherever to represent a large range of real numbers as exact as possible.

True. Floating point:
- Provides support for a wide range of values. (Both very small and very large)
- Helps programmers deal with errors in real arithmetic because floating point can represent $+\infty$, $-\infty$, NaN (Not a number)
- Keeps high precision. Recall that precision is a count of the number of bits in a computer word used to represent a value. IEEE 754 allocates a majority of bits for the significand, allowing for the use of a combination of negative powers of two to represent fractions.

1.2 Floating Point and Two’s Complement can represent the same total amount of numbers (any reals, integer, etc.) given the same number of bits.

False. Floating Point can represent infinities as well as NaNs, so the total amount of representable numbers is lower than Two’s Complement, where every bit combination maps to a unique integer value.

1.3 The distance between floating point numbers increases as the absolute value of the numbers increase.

True. The uneven spacing is due to the exponent representation of floating point numbers. There are a fixed number of bits in the significand. In IEEE 32 bit storage there are 23 bits for the significand, which means the LSB is 2^{-22} times the MSB. If the exponent is zero (after allowing for the offset) the difference between two neighboring floats will be 2^{-22}. If the exponent is 8, the difference between two neighboring floats will be 2^{-14} because the mantissa is multiplied by 2^8. Limited precision makes binary floating-point numbers discontinuous; there are gaps between them.

1.4 Floating Point addition is associative.

False. Because of rounding errors, you can find Big and Small numbers such that:
(Small + Big) + Big != Small + (Big + Big)
FP approximates results because it only has 23 bits for Significand.
2 Floating Point

The IEEE 754 standard defines a binary representation for floating point values using three fields.

- The sign determines the sign of the number (0 for positive, 1 for negative).
- The exponent is in biased notation. For instance, the bias is -127 which comes from \(-(2^8 - 1)\) for single-precision floating point numbers.
- The significand or mantissa is akin to unsigned integers, but used to store a fraction instead of an integer.

The below table shows the bit breakdown for the single precision (32-bit) representation. The leftmost bit is the MSB and the rightmost bit is the LSB.

<table>
<thead>
<tr>
<th>Sign</th>
<th>Exponent</th>
<th>Mantissa/Significand/Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8</td>
<td>23</td>
</tr>
</tbody>
</table>

For normalized floats:

\[
\text{Value} = (-1)^S \times 2^{\text{Exp} + \text{Bias}} \times 1.\text{Significand}_2
\]

For denormalized floats:

\[
\text{Value} = (-1)^S \times 2^{\text{Exp} + \text{Bias} + 1} \times 0.\text{Significand}_2
\]

<table>
<thead>
<tr>
<th>Exponent</th>
<th>Significand</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Anything</td>
<td>Denorm</td>
</tr>
<tr>
<td>1-254</td>
<td>Anything</td>
<td>Normal</td>
</tr>
<tr>
<td>255</td>
<td>0</td>
<td>Infinity</td>
</tr>
<tr>
<td>255</td>
<td>Nonzero</td>
<td>NaN</td>
</tr>
</tbody>
</table>

Note that in the above table, our exponent has values from 0 to 255. When translating between binary and decimal floating point values, we must remember that there is a bias for the exponent.

2.1 Convert the following single-precision floating point numbers from hexadecimal to decimal or from decimal to hexadecimal. You may leave your answer as an expression.

- \(0x00000000\)
 - 0
- \(0x41040000\)
 - 8.25
- \(0x40000000\)
 - \(2^{-12} + 2^{-13} + 2^{-14} + 2^{-15}\) * \(2^{-126}\)
- \(0xFF94BEEF\)
 - NaN
- \(0xFF800000\)
 - -\(\infty\)
- \(0x421E4000\)
 - \(\frac{1}{3}\)
- \(0x40000000\)
 - 39.5625

We’ll go more into depth with converting 8.25 and 0x00000F00. For the sake of brevity, the rest of the conversions can be done using the same process.

To convert 8.25 into binary, we first split up our 32b hexadecimal number into three parts. The sign is positive, so our sign bit \(-1^S\) will be 0. Then, we can solve for
our significand. We know that our number will have a non-zero exponent, so we will have a leading 1 for our mantissa. Splitting 8.25 into its integer and decimal portions, we can determine that 8 will be encoded in binary as 1000. and 0.25 will be .01 (the 1 corresponds to the 2^{-2} place), so by implying the MSB, our significand will be 00001000. Finally, we can solve for the exponent. As our leading 1 is in the 2^3 place to encode 8, we must use the bias in reverse to find what exponent we encode in binary. 130 added with a bias of -127 results in 3, so our exponent is 0b10000010. Our final binary number concatenated is 0 100 0001 0 000 0100 0000 0000 0000 0000, or 0x41040000.

For 0x00000F00, splitting up the hexadecimal gives us a sign bit and exponent bit of 0, and a significand of 0b 000 0000 0000 1111 0000 0000. We now know that this will be some sort of denormalized positive number. We can find out the true exponent by adding the bias + 1 to get the actual exponent of -126. Then, we can evaluate the mantissa by inspecting the bits that are 1 to the right of the radix point, and finding the corresponding negative power of two. This results in the mantissa evaluated as $2^{-12} + 2^{-13} + 2^{-14} + 2^{-15}$. Combining these get the extremely small number $(-1)^0 \times 2^{-126} \times (2^{-12} + 2^{-13} + 2^{-14} + 2^{-15})$.
3 More Floating Point Representation

As we saw above, not every number can be represented perfectly using floating point. For this question, we will only look at positive numbers.

3.1 What is the next smallest number larger than 2 that can be represented completely?

For this question, you increment the number by the smallest amount possible. This is the same as incrementing the significand by 1 at the rightmost location.

\[(1 + 2^{-23}) \times 2 = 2 + 2^{-22}\]

3.2 What is the next smallest number larger than 4 that can be represented completely?

For this question, you increment the number by the smallest amount possible. This is the same as incrementing the significand by 1 at the rightmost location.

\[(1 + 2^{-23}) \times 4 = 4 + 2^{-21}\]

3.3 What is the largest odd number that we can represent? Hint: At what power can we only represent even numbers?

To find the largest odd number we can represent, we want to find when odd numbers will stop appearing. This will be when the LSB will have a step size of 2, subtracted by 1. After this number, only even numbers can be represented in floating point.

We can think of each binary digit in the significant as corresponding to a different power of 2 to get to a final sum. For example, 0b1011 can be evaluated as \(2^3 + 2^1 + 2^0\), where the MSB is the 3rd bit and corresponds to \(2^3\) and the LSB is the 0th bit at \(2^0\).

We want our LSB to correspond to \(2^1\), so by counting the number of mantissa bits (23) and including the implicit 1, we get a total exponent of 24. The smallest number with this power would have a mantissa of 00..00, so after taking in account the implicit 1 and subtracting, this gives \(2^{24} - 1\)
4 Linked List

Suppose we’ve defined a linked list `struct` as follows. Assume `*lst` points to the first element of the list, or is `NULL` if the list is empty.

```c
struct ll_node {
    int first;
    struct ll_node* rest;
};
```

4.1 Implement `prepend`, which adds one new value to the front of the linked list. Hint: why use `ll_node** lst` instead of `ll_node* lst`?

```c
void prepend(struct ll_node** lst, int value) {
    struct ll_node* item = (struct ll_node*) malloc(sizeof(struct ll_node));
    item->first = value;
    item->rest = *lst;
    *lst = item;
}
```

4.2 Implement `free_ll`, which frees all the memory consumed by the linked list.

```c
void free_ll(struct ll_node** lst) {
    if (*lst) {
        free_ll(&(*lst)->rest);
        free(*lst);
    }
    *lst = NULL; // Make writes to **lst fail instead of writing to unusable memory.
}
```