
CS 61C C and Number Representation
Fall 2024 Discussion 1

1 Pre-Check: Introduction to C
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 The correct way of declaring a character array is char[] array.

1.2 True or False: C is a pass-by-value language.

2 Pass-by-who?
2.1 The following functions may contain logic or syntax errors. Find and correct them.

(a) Returns the sum of all the elements in summands.

1 int sum(int *summands) {

2 int sum = 0;

3 for (int i = 0; i < sizeof(summands); i++)

4 sum += *(summands + i);

5 return sum;

6 }

(b) Increments all of the letters in the string which is stored at the front of an

array of arbitrary length, n >= strlen(string). Does not modify any other

parts of the array’s memory.

1 void increment(char *string, int n) {

2 for (int i = 0; i < n; i++)

3 *(string + i)++;

4 }

(c) Overwrites an input string src with “61C is awesome!” if there’s room. Does

nothing if there is not. Assume that length correctly represents the length of

src.

1 void cs61c(char *src, size_t length) {

2 char *srcptr, replaceptr;

3 char replacement[16] = "61C is awesome!";

2 C and Number Representation

4 srcptr = src;

5 replaceptr = replacement;

6 if (length >= 16) {

7 for (int i = 0; i < 16; i++)

8 *srcptr++ = *replaceptr++;

9 }

10 }

2.2 Implement the following functions so that they work as described.

(a) Swap the value of two ints. Remain swapped after returning from this function.

Hint: Our answer is around three lines long.

void swap(________________, ________________) {

(b) Return the number of bytes in a string. Do not use strlen.

Hint: Our answer is around 5 lines long.

int mystrlen(________________) {

C and Number Representation 3

3 Pre-Check: Number Representation
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

3.1 Depending on the context, the same sequence of bits may represent different things.

3.2 It is possible to get an overflow error in Two’s Complement when adding numbers

of opposite signs.

3.3 If you interpret a N bit Two’s complement number as an unsigned number, negative

numbers would be smaller than positive numbers.

3.4 If you interpret an N bit Bias notation number as an unsigned number (assume

there are negative numbers for the given bias), negative numbers would be smaller

than positive numbers.

3.5 We can represent fractions and decimals in our given number representation formats

(unsigned, biased, and Two’s Complement).

4 Unsigned and Signed Integers
4.1 If we have an n-digit unsigned numeral dn−1dn−2 . . . d0 in radix (or base) r, then

the value of that numeral is
∑n−1

i=0 ridi, which is just fancy notation to say that

instead of a 10’s or 100’s place we have an r’s or r2’s place. For the three radices

binary, decimal, and hex, we just let r be 2, 10, and 16, respectively.

Let’s try this by hand.

(a) Convert the following numbers from their initial radix into the other two

common radices:

1. 0b10010011

2. 0

3. 437

4. 0x0123

(b) Convert the following numbers from hex to binary:

1. 0xD3AD

2. 0x7EC4

4 C and Number Representation

4.2 Unsigned binary numbers work for natural numbers, but many calculations use

negative numbers as well. To deal with this, a number of different schemes have

been used to represent signed numbers. Here are two common schemes:

Two’s Complement:

• We can write the value of an n-digit two’s complement number as
∑n−2

i=0 2idi −
2n−1dn−1.

• Negative numbers will have a 1 as their most significant bit (MSB). Plugging

in dn−1 = 1 to the formula above gets us
∑n−2

i=0 2idi − 2n−1.

• Meanwhile, positive numbers will have a 0 as their MSB. Plugging in dn−1 = 0

gets us
∑n−2

i=0 2idi, which is very similar to unsigned numbers.

• To negate a two’s complement number: flip all the bits and add 1.

• Addition is exactly the same as with an unsigned number.

• Only one 0, and it’s located at 0b0.

Biased Representation:

• The number line is shifted so that the smallest number we want to be repre-

sentable would be 0b0...0.

• To find out what the represented number is, read the representation as if it was

an unsigned number, then add the bias.

• We can shift to any arbitrary bias we want to suit our needs. To represent

(nearly) as much negative numbers as positive, a commonly-used bias for N

bits is –(2N−1 − 1).

For questions (a) through (c), assume an 8-bit integer and answer each one for the

case of an unsigned number, biased number with a bias of -127, and two’s complement

number. Indicate if it cannot be answered with a specific representation.

(a) What is the largest integer? What is the result of adding one to that number?

1. Unsigned?

2. Biased?

3. Two’s Complement?

(b) How would you represent the numbers 0, 1, and -1?

1. Unsigned?

2. Biased?

3. Two’s Complement?

(c) How would you represent 17 and -17?

1. Unsigned?

2. Biased?

3. Two’s Complement?

C and Number Representation 5

4.3 Prove that the two’s complement inversion trick is valid (i.e. that x and x+ 1 sum

to 0).

5 Arithmetic and Counting
Addition and subtraction of binary/hex numbers can be done in a similar fashion as

with decimal digits by working right to left and carrying over extra digits to the

next place. However, sometimes this may result in an overflow if the number of bits

can no longer represent the true sum. Overflow occurs if and only if two numbers

with the same sign are added and the result has the opposite sign.

5.1 Compute the decimal result of the following arithmetic expressions involving 6-bit

Two’s Complement numbers as they would be calculated on a computer. Do any of

these result in an overflow? Are all these operations possible?

(a) 0b011001 − 0b000111

(b) 0b100011 + 0b111010

(c) 0x3B + 0x06

(d) 0xFF − 0xAA

(e) 0b000100 − 0b001000

5.2 How many distinct numbers can the following schemes represent? How many distinct

positive numbers?

(a) 10-bit unsigned

(b) 8-bit Two’s Complement

(c) 6-bit biased, with a bias of -30

(d) 10-bit sign-magnitude

6 C and Number Representation

6 Endianness
• Machines are byte-addressable. Memory is like a large array of cells. Each

storage cell stores 8 bits, and these byte cells are ordered with an address.

• A 32b architecture has 32 bit memory addresses, addresses 0x00000000 -

0xFFFFFFFF

Typed variables

• Examples: int, long, char

• sizeof(dataType) indicates the number of bytes in memory required to store a

particular data type

Pointers

• a variable whose value is an address of another variable

• Declaration: dataType* name;

• Dereference operator: Based on the pointer declaration statement, the compiler

fetches the corresponding amount of bytes. For example, if p is a pointer to a

4 byte integer variable x, then *p involves fetching 4 bytes starting from the

address of x, which is the value of p. Therefore, the value of x and value of *p

are equal

Endianness

• Recall different data types are stored in x amount of contiguous byte cells in

memory

• Big endian: the most significant byte of the value of a variable is stored in

memory at the lowest address of the chunk of byte cells allocated for that

variable

• Little endian: the least significant byte of the value of a variable is stored

in memory at the lowest address of the chunk of byte cells allocated for the

variable

6.1 Based on the following code and a 32b architecture, fill in the values located in

memory at the byte cells for both a big endian and little endian system.

Suppose:

• the array nums starts at address 0x36432100

• p’s address is 0x10000000

1 uint32_t nums[2] = {10, 20};

2 uint32_t* q = (uint32_t*) nums;

3 uint32_t** p = &q;

C and Number Representation 7

Little endian

...

...

...

0x20

0x00

0x00

0x00
...

0xFFFFFFFF
0x36432107

0x36432100

0x20000003

0x20000000

0x10000003

0x10000000
Big endian

...

...

...

0x00

0x00

0x00

0x20
...

0xFFFFFFFF
0x36432107

0x36432100

0x20000003

0x20000000

0x10000003

0x10000000

6.2 Provide two answers for the following questions: big endian system and little endian

system

Suppose uint64_t* y = (uint64_t*) nums is executed after the code

1. What does *y evaluate to?

2. What does &q evaluate to? What does &nums evaluate to?

3. What does *(q+1) evaluate to?

	Pre-Check: Introduction to C
	Pass-by-who?
	Pre-Check: Number Representation
	Unsigned and Signed Integers
	Arithmetic and Counting
	Endianness

