CS 61C F]oating Point, RISC-V
Faﬂ 2024 Discussion 3

1 Pre— Check

The idea of floating point is to use the ability to move the radix (decimal) point

wherever to represent a large range of real numbers as exact as possible.

True. Floating point:

- Provides support for a wide range of values. (Both very small and very large)

- Helps programmers deal with errors in real arithmetic because floating point can
represent + 0o, -0o, NaN (Not a number)

- Keeps high precision. Recall that precision is a count of the number of bits in a
computer word used to represent a value. IEEE 754 allocates a majority of bits for
the significand, allowing for the use of a combination of negative powers of two to

represent fractions.

Floating Point and Two’s Complement can represent the same total amount of

numbers (any reals, integer, etc.) given the same number of bits.

False. Floating Point can represent infinities as well as NaNs, so the total amount of
representable numbers is lower than Two’s Complement, where every bit combination

maps to a unique integer value.

The distance between floating point numbers increases as the absolute value of the

numbers increase.

True. The uneven spacing is due to the exponent representation of floating point
numbers. There are a fixed number of bits in the significand. In IEEE 32 bit
storage there are 23 bits for the significand, which means the LSB represents 2723
times 2 to the exponent. For example, if the exponent is zero (after allowing
for the offset) the difference between two neighboring floats will be 2722, If the
exponent is 8, the difference between two neighboring floats will be 27 1% because the
mantissa is multiplied by 28. Limited precision makes binary floating-point numbers

discontinuous; there are gaps between them.
Floating Point addition is associative.

False. Because of rounding errors, you can find Big and Small numbers such that:
(Small + Big) + Big != Small + (Big + Big)
FP approximates results because it only has 23 bits for Significand.

Let a0 point to the start of an array x. 1w s@, 4(a@) will always load x[1] into s@.

2 Floating Point, RISC-V

False. This only holds for data types that are four bytes wide, like int or float.
For data-types like char that are only one byte wide, 4(a@) is too large of an offset
to return the element at index 1, and will instead return a char further down the

array (or some other data beyond the array, depending on the array length).

Assuming no compiler or operating system protections, it is possible to have the code
jump to data stored at @(a@) (offset 0 from the value in register a@) and execute
instructions from there.

True. If your compiler/OS allows it (some do not, for security reasons), it is possible
for your code to jump to and execute instructions passed into the program via an
array. Conversely, it’s also possible for your code to treat itself as normal data

(search up self-modifying code if you want to see more details).

jalr is a shorthand expression for a jal that jumps to the specified label and does

not store a return address anywhere.

False. jalr is used to return to the memory address specified in the second argument.
Keep in mind that jal jumps to a label (which is translated into an immediate by
the assembler), whereas jalr jumps to an address stored in a register, which is set
at runtime. Related, j label is a pseudo-instruction for jal x@, label (they do
the same thing).

2 Floating Point

The TEEE 754 standard defines a binary representation for floating point values
using three fields.
e The sign determines the sign of the number (0 for positive, 1 for negative).
e The exponent is in biased notation. For instance, the bias is -127 which

comes from -(28~1 — 1) for single-precision floating point numbers.
e The significand or mantissa is akin to unsigned integers, but used to store a

fraction instead of an integer.

The below table shows the bit breakdown for the single precision (32-bit) represen-
tation. The leftmost bit is the MSB and the rightmost bit is the LSB.

1 8 23
Sign

Exponent Mantissa/Significand /Fraction

For normalized floats:

Value = (—1)Siegn x 2Bxp+Bias , | gjgnificand,
For denormalized floats:

Value = (—1)Sign x 2Exp+Biastl 4 () significand,

Exponent | Significand | Meaning
0 Anything Denorm
1-254 Anything Normal
255 0 Infinity
255 Nonzero NaN

Note that in the above table, our exponent has values from 0 to 255. When
translating between binary and decimal floating point values, we must remember

Floating Point, RISC-V 3

that there is a bias for the exponent.

Convert the following single-precision floating point numbers from hexadecimal

to decimal or from decimal to hexadecimal. You may leave your answer as an

expression.
e 0x00000000 0x421E4000
0 o 0xFF94BEEF
e 8.25 NaN
0x41040000 ® -00
e 0x00000F00 0xFEF800000

(2—12 49718 4 o-14 4 2—15) £ 9126 e 1/3

N/A — Impossible to actually rep-

* 39.5625 resent, we can only approximate it

We’ll go more into depth with converting 8.25 and 0x00000F00. For the sake of

brevity, the rest of the conversions can be done using the same process.

To convert 8.25 into binary, we first split up our 32b hexadecimal number into three
parts. The sign is positive, so our sign bit —1° will be 0. Then, we can solve for
our significand. We know that our number will have a non-zero exponent, so we
will have a leading 1 for our mantissa. Splitting 8.25 into its integer and decimal
portions, we can determine that 8 will be encoded in binary as 1000. and 0.25 will
be .01 (the 1 corresponds to the 272 place), so by implying the MSB, our significand
will be 00001000.. Finally, we can solve for the exponent. As our leading 1 is in
the 23 place to encode 8, we must use the bias in reverse to find what exponent
we encode in binary. 130 added with a bias of -127 results in 3, so our exponent is
0b10000010. Our final binary number concatenated is 0 100 0001 0 000 0100 0000
0000 0000 0000, or 0x41040000.

For 0x00000F00, splitting up the hexadecimal gives us a sign bit and exponent bit
of 0, and a significand of Ob 000 0000 0000 1111 0000 0000. We now know that
this will be some sort of denormalized positive number. We can find out the true
exponent by adding the bias + 1 to get the actual exponent of —126. Then, we can
evaluate the mantissa by inspecting the bits that are 1 to the right of the radix point,
and finding the corresponding negative power of two. This results in the mantissa
evaluated as 2712 42713 4 2714 4 9715 Combining these get the extremely small
number (—1)0 % 27126 4 (2712 4 2713 4 9—14 4 9-15)

3 More Floating Point Representation

As we saw above, not every number can be represented perfectly using floating point.

For this question, we will only look at positive numbers.

What is the next smallest number larger than 2 that can be represented completely?

4 Floating Point, RISC-V

For this question, you increment the number by the smallest amount possible. This
is the same as incrementing the significand by 1 at the rightmost location.
(1+28)x2=2+4+2"22

What is the next smallest number larger than 4 that can be represented completely?

For this question, you increment the number by the smallest amount possible. This
is the same as incrementing the significand by 1 at the rightmost location.
(1+2B)x4=4+42"2

What is the largest odd number that we can represent? Hint: At what power can

we only represent even numbers?

To find the largest odd number we can represent, we want to find when odd numbers
will stop appearing. This will be when the LSB will have a step size of 2, subtracted
by 1. After this number, only even numbers can be represented in floating point.

We can think of each binary digit in the significant as corresponding to a different
power of 2 to get to a final sum. For example, 0b1011 can be evaluated as 23 42! 42°,
where the MSB is the 3rd bit and corresponds to 2% and the LSB is the Oth bit at 2°.

We want our LSB to correspond to 2!, so by counting the number of mantissa bits
(23) and including the implicit 1, we get a total exponent of 24. The smallest number
with this power would have a mantissa of 00..00, so after taking in account the
implicit 1 and subtracting, this gives 224 — 1

4 Instructions

RISC-V is an assembly language, which is comprised of simple instructions that

each do a single task such as addition or storing a chunk of data to memory.

For example, on the left, RISC-V code accomplishes the same task as the C code,
on the right, with its streamlined instructions.

// x in s@, &y in si

addi so, x0, 5 int x = 5;
sw s@, 0(s1) y[2];

mul to, s0, sO y[@] = x;

sw t0, 4(s1) y[11 = x * x;

For your reference, here are some of the basic instructions for arithmetic/bitwise
operations and memory access (Note: rsl is argument register 1, rs2 is argument
register 2, and rd is destination register):

[inst] [destination register] [argument register 1] [argument register 2]

add Adds the two argument registers and stores in destination register

xor | Exclusive or’s the two argument registers and stores in destination register

mul Multiplies the two argument registers and stores in destination register

Floating Point, RISC-V 5

sll Logical left shifts rs1 by rs2 and stores in rd

srl Logical right shifts rs1 by rs2 and stores in rd

sra, Arithmetic right shifts rs1 by rs2 and stores in rd
slt/u | If rsl < rsl, stores 1 in rd, otherwise stores 0, u does unsigned comparison
[inst) [register| [offset]([register containing base address])

SW Stores the contents of the register to the address+offset in memory

lw Takes the contents of address+offset in memory and stores in the register
[inst] [argument register 1] [argument register 2] [label]

beq If rs1 == rs2, moves to label

bne If rs1 != rs2, moves to label
[inst] [destination register] [label]

jal Stores the next instruction’s address into rd and moves to label

[15%2

You may also see that there is an “i” at the end of certain instructions, such as addi,
slli, etc. This means that rs2 becomes an “immediate” or an integer instead of using
a register. There are also immediates in some other instructions such as sw and
lw. Note that the size (maximum number of bits) of an immediate in any given

instruction depends on what type of instruction it is (more on this soon!).

Assume we have an array in memory that contains int *arr = {1,2,3,4,5,6,0}.
Let register s hold the address of the element at index 0 in arr. You may assume
integers are four bytes and our values are word-aligned. What do the snippets of
RISC-V code do? Assume that all the instructions are run one after the other in
the same context.

a) Iw teo, 12(s0) -=> Sets t0 equal to arr[3]

b) sw to, 16(s0) -=> Stores t@ into arr[4]

c) slli t1, teo, 2
add t2, so, ti

lw t3, o(t2) -=> Increments arr[t@] by 1
addi t3, t3, 1
sw t3, 0(t2)

d) lw to, 0(s0)
xori t@, t@, OxFFF -=> Sets t0 to -1 * arr[o]
addi to, to, 1

Assume that s@ and s1 contain signed integers. Without any pseudoinstructions,
how can we branch on the following conditions to jump to some LABEL?

S0 < sl s0 # sl so < si s@ > sl

blt s@, s1, LABEL bne s@, s1, LABEL bge s1, s@, LABEL blt s1, s@, LABEL

6 Floating Point, RISC-V

Note that RISC-V does not provide a bgt instruction because you can manipulate
the blt instruction to get an equivalent result. Also note that the above solutions
assume that s@ and s1 contained signed integers. If they are unsigned, then we

would use the unsigned variants of the above commands (namely, bltu, bgeu).

5 Memory ACCGSS

Using the given instructions and the sample memory array, what will happen when
the RISC-V code is executed? For load instructions (1w, 1lb, 1h), write out what
each register will store. For store instructions (sw, sh, sb), update the memory
array accordingly. Recall that RISC-V is little-endian and byte addressable.

1i t0 0x00FF0000 OxFFFFFFFF
I "c'l o(to) Ox00FF0004 | 0x000C561C
addi 0 o 4 0x00FF0000 36
1h t2 2(t0) —
1w s@ o(t1) 0x00000036 | OxFDFDFDFD
1b s1 3(t2) 0x00000024 | OxDEADB33F
0x0000000C | OxC5161C00
What value does each register hold after 0x00000000

the code is executed?

t0 will hold @xQ0FF0004, adding 4 to the initial address. t1 will hold 36, loading the
word from the address 0x00FF@000. t2 will hold 0xC, loading the upper half of the
address 0x00FF0004. s0@ will hold the word at 36 = 0x24, so @xDEADB33F. Finally,
s1 will hold @xFFFFFFC5, taking the most significant byte and sign-extending it.

1i t@ OxABADCAFE OXFFFFFFFF
1i t1 0xF9120504
1i t2 OXBEEFCACE OxF9120504
sw to 9(t1)
addi t1 t1 4
addi to to 4

OxABADCAFE
sh t1 2(te)
sb t2 1(t2) 0x00000004
sb t2 3(t1) 0X00000000 | 0x00000000
sb t2 3(t0)

Update the memory array with its new values after the code is executed. Some
memory addresses may not have been labeled for you yet.

OXFFFFFFFF

0xF9120508
0xF9120504
OxBEEFCAD2
OxBEEFCACE
OxABADCB@2
OxABADCAFE

0x00000004
0x00000000

0xCEQ00000

OxABADCAFE

0x0000CEQ0O

0xCE080000

0x00000000

Floating Point, RISC-V

0 Lost in Translation

Translate between the C and RISC-V verbatim.

C RISC-V
// s@ > a, s1 > b addi so, xo, 4
// s2 ->c, s3 -> z addi s1, x0, 5
inta=4, b=5, c=6, z; addi s2, x0, 6
z=a+b+c+ 10; add s3, s0, sl
add s3, s3, s2
addi s3, s3, 10
// s@ -> int x p = intArr; sw X0, 0(s0)
// s1 -> a; addi s1, x0, 2
*p = 0; sw s1, 4(s0)
int a = 2; slli to, s1, 2
pl1] = plal = a; add to, to, so
sw s1, 0(to)
// s0 > a, s1 => b addi s@, x0, 5
int a =5, b =109; addi s1, x0, 10
if(a +a==">b) { add t0, s0, s0
a=0; bne t@, s1, else
} else { xor s, x@, x0
b=a-1; jal x0, exit
} else:
addi s1, s0, -1
exit:

8

Floating Point, RISC-V

// computes s1 = 2730 addi so0, x0, 0
// assume int s1, s@; was declared above addi s1, xo, 1
s1 =1; addi to@, x0, 30
for(s@ = 0; s0 != 30; s0++) { loop:
s1 *= 2; beq s0, t0, exit
} add s1, s1, sl
addi s0, s0, 1
jal x@, loop
exit:
// s@ -> n, s1 -> sum addi s1, x0, @
// assume n > @ to start loop:
for(int sum = @; n > 0; n--) { beq s0, x0, exit
sum += n; add s1, s1, s@
} addi s0, so, -1
jal x@, loop

exit:

	Pre-Check
	Floating Point
	More Floating Point Representation
	Instructions
	Memory Access
	Lost in Translation

