
CS 61C Floating Point, RISC-V
Fall 2024 Discussion 3

1 Pre-Check
1.1 The idea of floating point is to use the ability to move the radix (decimal) point

wherever to represent a large range of real numbers as exact as possible.

True. Floating point:

- Provides support for a wide range of values. (Both very small and very large)

- Helps programmers deal with errors in real arithmetic because floating point can

represent + ∞, -∞, NaN (Not a number)

- Keeps high precision. Recall that precision is a count of the number of bits in a

computer word used to represent a value. IEEE 754 allocates a majority of bits for

the significand, allowing for the use of a combination of negative powers of two to

represent fractions.

1.2 Floating Point and Two’s Complement can represent the same total amount of

numbers (any reals, integer, etc.) given the same number of bits.

False. Floating Point can represent infinities as well as NaNs, so the total amount of

representable numbers is lower than Two’s Complement, where every bit combination

maps to a unique integer value.

1.3 The distance between floating point numbers increases as the absolute value of the

numbers increase.

True. The uneven spacing is due to the exponent representation of floating point

numbers. There are a fixed number of bits in the significand. In IEEE 32 bit

storage there are 23 bits for the significand, which means the LSB represents 2−23

times 2 to the exponent. For example, if the exponent is zero (after allowing

for the offset) the difference between two neighboring floats will be 2−23. If the

exponent is 8, the difference between two neighboring floats will be 2−15 because the

mantissa is multiplied by 28. Limited precision makes binary floating-point numbers

discontinuous; there are gaps between them.

1.4 Floating Point addition is associative.

False. Because of rounding errors, you can find Big and Small numbers such that:

(Small + Big) + Big != Small + (Big + Big)

FP approximates results because it only has 23 bits for Significand.

1.5 Let a0 point to the start of an array x. lw s0, 4(a0) will always load x[1] into s0.



2 Floating Point, RISC-V

False. This only holds for data types that are four bytes wide, like int or float.

For data-types like char that are only one byte wide, 4(a0) is too large of an offset

to return the element at index 1, and will instead return a char further down the

array (or some other data beyond the array, depending on the array length).

1.6 Assuming no compiler or operating system protections, it is possible to have the code

jump to data stored at 0(a0) (offset 0 from the value in register a0) and execute

instructions from there.

True. If your compiler/OS allows it (some do not, for security reasons), it is possible

for your code to jump to and execute instructions passed into the program via an

array. Conversely, it’s also possible for your code to treat itself as normal data

(search up self-modifying code if you want to see more details).

1.7 jalr is a shorthand expression for a jal that jumps to the specified label and does

not store a return address anywhere.

False. jalr is used to return to the memory address specified in the second argument.

Keep in mind that jal jumps to a label (which is translated into an immediate by

the assembler), whereas jalr jumps to an address stored in a register, which is set

at runtime. Related, j label is a pseudo-instruction for jal x0, label (they do

the same thing).

2 Floating Point
The IEEE 754 standard defines a binary representation for floating point values

using three fields.

• The sign determines the sign of the number (0 for positive, 1 for negative).
• The exponent is in biased notation. For instance, the bias is -127 which

comes from -(28−1 − 1) for single-precision floating point numbers.
• The significand or mantissa is akin to unsigned integers, but used to store a

fraction instead of an integer.

The below table shows the bit breakdown for the single precision (32-bit) represen-

tation. The leftmost bit is the MSB and the rightmost bit is the LSB.

1 8 23

Sign Exponent Mantissa/Significand/Fraction

For normalized floats:

Value = (−1)Sign ∗ 2Exp+Bias ∗ 1.significand2

For denormalized floats:

Value = (−1)Sign ∗ 2Exp+Bias+1 ∗ 0.significand2

Exponent Significand Meaning

0 Anything Denorm

1-254 Anything Normal

255 0 Infinity

255 Nonzero NaN

Note that in the above table, our exponent has values from 0 to 255. When

translating between binary and decimal floating point values, we must remember



Floating Point, RISC-V 3

that there is a bias for the exponent.

2.1 Convert the following single-precision floating point numbers from hexadecimal

to decimal or from decimal to hexadecimal. You may leave your answer as an

expression.

• 0x00000000

0

• 8.25

0x41040000

• 0x00000F00

(2−12 + 2−13 + 2−14 + 2−15) ∗ 2−126

• 39.5625

0x421E4000

• 0xFF94BEEF

NaN

• -∞

0xFF800000

• 1/3

N/A — Impossible to actually rep-

resent, we can only approximate it

We’ll go more into depth with converting 8.25 and 0x00000F00. For the sake of

brevity, the rest of the conversions can be done using the same process.

To convert 8.25 into binary, we first split up our 32b hexadecimal number into three

parts. The sign is positive, so our sign bit −1S will be 0. Then, we can solve for

our significand. We know that our number will have a non-zero exponent, so we

will have a leading 1 for our mantissa. Splitting 8.25 into its integer and decimal

portions, we can determine that 8 will be encoded in binary as 1000. and 0.25 will

be .01 (the 1 corresponds to the 2−2 place), so by implying the MSB, our significand

will be 00001000.. Finally, we can solve for the exponent. As our leading 1 is in

the 23 place to encode 8, we must use the bias in reverse to find what exponent

we encode in binary. 130 added with a bias of -127 results in 3, so our exponent is

0b10000010. Our final binary number concatenated is 0 100 0001 0 000 0100 0000

0000 0000 0000, or 0x41040000.

For 0x00000F00, splitting up the hexadecimal gives us a sign bit and exponent bit

of 0, and a significand of 0b 000 0000 0000 1111 0000 0000. We now know that

this will be some sort of denormalized positive number. We can find out the true

exponent by adding the bias + 1 to get the actual exponent of −126. Then, we can

evaluate the mantissa by inspecting the bits that are 1 to the right of the radix point,

and finding the corresponding negative power of two. This results in the mantissa

evaluated as 2−12 + 2−13 + 2−14 + 2−15. Combining these get the extremely small

number (−1)0 ∗ 2−126 ∗ (2−12 + 2−13 + 2−14 + 2−15)

3 More Floating Point Representation
As we saw above, not every number can be represented perfectly using floating point.

For this question, we will only look at positive numbers.

3.1 What is the next smallest number larger than 2 that can be represented completely?



4 Floating Point, RISC-V

For this question, you increment the number by the smallest amount possible. This

is the same as incrementing the significand by 1 at the rightmost location.

(1 + 2−23) ∗ 2 = 2 + 2−22

3.2 What is the next smallest number larger than 4 that can be represented completely?

For this question, you increment the number by the smallest amount possible. This

is the same as incrementing the significand by 1 at the rightmost location.

(1 + 2−23) ∗ 4 = 4 + 2−21

3.3 What is the largest odd number that we can represent? Hint: At what power can

we only represent even numbers?

To find the largest odd number we can represent, we want to find when odd numbers

will stop appearing. This will be when the LSB will have a step size of 2, subtracted

by 1. After this number, only even numbers can be represented in floating point.

We can think of each binary digit in the significant as corresponding to a different

power of 2 to get to a final sum. For example, 0b1011 can be evaluated as 23+21+20,

where the MSB is the 3rd bit and corresponds to 23 and the LSB is the 0th bit at 20.

We want our LSB to correspond to 21, so by counting the number of mantissa bits

(23) and including the implicit 1, we get a total exponent of 24. The smallest number

with this power would have a mantissa of 00..00, so after taking in account the

implicit 1 and subtracting, this gives 224 − 1

4 Instructions
RISC-V is an assembly language, which is comprised of simple instructions that

each do a single task such as addition or storing a chunk of data to memory.

For example, on the left, RISC-V code accomplishes the same task as the C code,

on the right, with its streamlined instructions.

// x in s0, &y in s1

addi s0, x0, 5 int x = 5;

sw s0, 0(s1) y[2];

mul t0, s0, s0 y[0] = x;

sw t0, 4(s1) y[1] = x * x;

For your reference, here are some of the basic instructions for arithmetic/bitwise

operations and memory access (Note: rs1 is argument register 1, rs2 is argument

register 2, and rd is destination register):

[inst] [destination register] [argument register 1] [argument register 2]

add Adds the two argument registers and stores in destination register

xor Exclusive or’s the two argument registers and stores in destination register

mul Multiplies the two argument registers and stores in destination register



Floating Point, RISC-V 5

sll Logical left shifts rs1 by rs2 and stores in rd

srl Logical right shifts rs1 by rs2 and stores in rd

sra Arithmetic right shifts rs1 by rs2 and stores in rd

slt/u If rs1 < rs1, stores 1 in rd, otherwise stores 0, u does unsigned comparison

[inst] [register] [offset]([register containing base address])

sw Stores the contents of the register to the address+offset in memory

lw Takes the contents of address+offset in memory and stores in the register

[inst] [argument register 1] [argument register 2] [label]

beq If rs1 == rs2, moves to label

bne If rs1 != rs2, moves to label

[inst] [destination register] [label]

jal Stores the next instruction’s address into rd and moves to label

You may also see that there is an “i” at the end of certain instructions, such as addi,

slli, etc. This means that rs2 becomes an “immediate” or an integer instead of using

a register. There are also immediates in some other instructions such as sw and

lw. Note that the size (maximum number of bits) of an immediate in any given

instruction depends on what type of instruction it is (more on this soon!).

4.1 Assume we have an array in memory that contains int *arr = {1,2,3,4,5,6,0}.
Let register s0 hold the address of the element at index 0 in arr. You may assume

integers are four bytes and our values are word-aligned. What do the snippets of

RISC-V code do? Assume that all the instructions are run one after the other in

the same context.

a) lw t0, 12(s0) -->

b) sw t0, 16(s0) -->

c) slli t1, t0, 2

add t2, s0, t1

lw t3, 0(t2) -->

addi t3, t3, 1

sw t3, 0(t2)

d) lw t0, 0(s0)

xori t0, t0, 0xFFF -->

addi t0, t0, 1

Sets t0 equal to arr[3]

Stores t0 into arr[4]

Increments arr[t0] by 1

Sets t0 to -1 * arr[0]

4.2 Assume that s0 and s1 contain signed integers. Without any pseudoinstructions,

how can we branch on the following conditions to jump to some LABEL?

s0 < s1

blt s0, s1, LABEL

s0 ̸= s1

bne s0, s1, LABEL

s0 ≤ s1

bge s1, s0, LABEL

s0 > s1

blt s1, s0, LABEL



6 Floating Point, RISC-V

Note that RISC-V does not provide a bgt instruction because you can manipulate

the blt instruction to get an equivalent result. Also note that the above solutions

assume that s0 and s1 contained signed integers. If they are unsigned, then we

would use the unsigned variants of the above commands (namely, bltu, bgeu).

5 Memory Access
Using the given instructions and the sample memory array, what will happen when

the RISC-V code is executed? For load instructions (lw, lb, lh), write out what

each register will store. For store instructions (sw, sh, sb), update the memory

array accordingly. Recall that RISC-V is little-endian and byte addressable.

5.1 li t0 0x00FF0000

lw t1 0(t0)

addi t0 t0 4

lh t2 2(t0)

lw s0 0(t1)

lb s1 3(t2)

What value does each register hold after

the code is executed?

...

0x000C561C

36
...

0xFDFDFDFD

0xDEADB33F
...

0xC5161C00
...

0xFFFFFFFF

0x00FF0004

0x00FF0000

0x00000036

0x00000024

0x0000000C

0x00000000

t0 will hold 0x00FF0004, adding 4 to the initial address. t1 will hold 36, loading the

word from the address 0x00FF0000. t2 will hold 0xC, loading the upper half of the

address 0x00FF0004. s0 will hold the word at 36 = 0x24, so 0xDEADB33F. Finally,

s1 will hold 0xFFFFFFC5, taking the most significant byte and sign-extending it.

5.2 li t0 0xABADCAFE

li t1 0xF9120504

li t2 0xBEEFCACE

sw t0 0(t1)

addi t1 t1 4

addi t0 t0 4

sh t1 2(t0)

sb t2 1(t2)

sb t2 3(t1)

sb t2 3(t0)

0x00000000

0xFFFFFFFF

0xF9120504

0xABADCAFE

0x00000004
0x00000000

Update the memory array with its new values after the code is executed. Some

memory addresses may not have been labeled for you yet.



Floating Point, RISC-V 7

0xCE000000

0xABADCAFE

0x0000CE00

0xCE080000

0x00000000

0xFFFFFFFF

0xF9120508

0xF9120504
0xBEEFCAD2
0xBEEFCACE

0xABADCB02
0xABADCAFE

0x00000004
0x00000000

6 Lost in Translation
6.1 Translate between the C and RISC-V verbatim.

C RISC-V

// s0 -> a, s1 -> b

// s2 -> c, s3 -> z

int a = 4, b = 5, c = 6, z;

z = a + b + c + 10;

addi s0, x0, 4

addi s1, x0, 5

addi s2, x0, 6

add s3, s0, s1

add s3, s3, s2

addi s3, s3, 10

// s0 -> int * p = intArr;

// s1 -> a;

*p = 0;

int a = 2;

p[1] = p[a] = a;

sw x0, 0(s0)

addi s1, x0, 2

sw s1, 4(s0)

slli t0, s1, 2

add t0, t0, s0

sw s1, 0(t0)

// s0 -> a, s1 -> b

int a = 5, b = 10;

if(a + a == b) {

a = 0;

} else {

b = a - 1;

}

addi s0, x0, 5

addi s1, x0, 10

add t0, s0, s0

bne t0, s1, else

xor s0, x0, x0

jal x0, exit

else:

addi s1, s0, -1

exit:



8 Floating Point, RISC-V

// computes s1 = 2ˆ30

// assume int s1, s0; was declared above

s1 = 1;

for(s0 = 0; s0 != 30; s0++) {

s1 *= 2;

}

addi s0, x0, 0

addi s1, x0, 1

addi t0, x0, 30

loop:

beq s0, t0, exit

add s1, s1, s1

addi s0, s0, 1

jal x0, loop

exit:

// s0 -> n, s1 -> sum

// assume n > 0 to start

for(int sum = 0; n > 0; n--) {

sum += n;

}

addi s1, x0, 0

loop:

beq s0, x0, exit

add s1, s1, s0

addi s0, s0, -1

jal x0, loop

exit:


	Pre-Check
	Floating Point
	More Floating Point Representation
	Instructions
	Memory Access
	Lost in Translation

