
CS 61C Floating Point, RISC-V
Fall 2024 Discussion 3

1 Pre-Check
1.1 The idea of floating point is to use the ability to move the radix (decimal) point

wherever to represent a large range of real numbers as exact as possible.

1.2 Floating Point and Two’s Complement can represent the same total amount of

numbers (any reals, integer, etc.) given the same number of bits.

1.3 The distance between floating point numbers increases as the absolute value of the

numbers increase.

1.4 Floating Point addition is associative.

1.5 Let a0 point to the start of an array x. lw s0, 4(a0) will always load x[1] into s0.

1.6 Assuming no compiler or operating system protections, it is possible to have the code

jump to data stored at 0(a0) (offset 0 from the value in register a0) and execute

instructions from there.

1.7 jalr is a shorthand expression for a jal that jumps to the specified label and does

not store a return address anywhere.



2 Floating Point, RISC-V

2 Floating Point
The IEEE 754 standard defines a binary representation for floating point values

using three fields.

• The sign determines the sign of the number (0 for positive, 1 for negative).
• The exponent is in biased notation. For instance, the bias is -127 which

comes from -(28−1 − 1) for single-precision floating point numbers.
• The significand or mantissa is akin to unsigned integers, but used to store a

fraction instead of an integer.

The below table shows the bit breakdown for the single precision (32-bit) represen-

tation. The leftmost bit is the MSB and the rightmost bit is the LSB.

1 8 23

Sign Exponent Mantissa/Significand/Fraction

For normalized floats:

Value = (−1)Sign ∗ 2Exp+Bias ∗ 1.significand2

For denormalized floats:

Value = (−1)Sign ∗ 2Exp+Bias+1 ∗ 0.significand2

Exponent Significand Meaning

0 Anything Denorm

1-254 Anything Normal

255 0 Infinity

255 Nonzero NaN

Note that in the above table, our exponent has values from 0 to 255. When

translating between binary and decimal floating point values, we must remember

that there is a bias for the exponent.

2.1 Convert the following single-precision floating point numbers from hexadecimal

to decimal or from decimal to hexadecimal. You may leave your answer as an

expression.

• 0x00000000

• 8.25

• 0x00000F00

• 39.5625

• 0xFF94BEEF

• -∞

• 1/3



Floating Point, RISC-V 3

3 More Floating Point Representation
As we saw above, not every number can be represented perfectly using floating point.

For this question, we will only look at positive numbers.

3.1 What is the next smallest number larger than 2 that can be represented completely?

3.2 What is the next smallest number larger than 4 that can be represented completely?

3.3 What is the largest odd number that we can represent? Hint: At what power can

we only represent even numbers?



4 Floating Point, RISC-V

4 Instructions
RISC-V is an assembly language, which is comprised of simple instructions that

each do a single task such as addition or storing a chunk of data to memory.

For example, on the left, RISC-V code accomplishes the same task as the C code,

on the right, with its streamlined instructions.

// x in s0, &y in s1

addi s0, x0, 5 int x = 5;

sw s0, 0(s1) y[2];

mul t0, s0, s0 y[0] = x;

sw t0, 4(s1) y[1] = x * x;

For your reference, here are some of the basic instructions for arithmetic/bitwise

operations and memory access (Note: rs1 is argument register 1, rs2 is argument

register 2, and rd is destination register):

[inst] [destination register] [argument register 1] [argument register 2]

add Adds the two argument registers and stores in destination register

xor Exclusive or’s the two argument registers and stores in destination register

mul Multiplies the two argument registers and stores in destination register

sll Logical left shifts rs1 by rs2 and stores in rd

srl Logical right shifts rs1 by rs2 and stores in rd

sra Arithmetic right shifts rs1 by rs2 and stores in rd

slt/u If rs1 < rs1, stores 1 in rd, otherwise stores 0, u does unsigned comparison

[inst] [register] [offset]([register containing base address])

sw Stores the contents of the register to the address+offset in memory

lw Takes the contents of address+offset in memory and stores in the register

[inst] [argument register 1] [argument register 2] [label]

beq If rs1 == rs2, moves to label

bne If rs1 != rs2, moves to label

[inst] [destination register] [label]

jal Stores the next instruction’s address into rd and moves to label

You may also see that there is an “i” at the end of certain instructions, such as addi,

slli, etc. This means that rs2 becomes an “immediate” or an integer instead of using

a register. There are also immediates in some other instructions such as sw and

lw. Note that the size (maximum number of bits) of an immediate in any given

instruction depends on what type of instruction it is (more on this soon!).

4.1 Assume we have an array in memory that contains int *arr = {1,2,3,4,5,6,0}.
Let register s0 hold the address of the element at index 0 in arr. You may assume

integers are four bytes and our values are word-aligned. What do the snippets of

RISC-V code do? Assume that all the instructions are run one after the other in

the same context.



Floating Point, RISC-V 5

a) lw t0, 12(s0) -->

b) sw t0, 16(s0) -->

c) slli t1, t0, 2

add t2, s0, t1

lw t3, 0(t2) -->

addi t3, t3, 1

sw t3, 0(t2)

d) lw t0, 0(s0)

xori t0, t0, 0xFFF -->

addi t0, t0, 1

4.2 Assume that s0 and s1 contain signed integers. Without any pseudoinstructions,

how can we branch on the following conditions to jump to some LABEL?

s0 < s1 s0 ̸= s1 s0 ≤ s1 s0 > s1

5 Memory Access
Using the given instructions and the sample memory array, what will happen when

the RISC-V code is executed? For load instructions (lw, lb, lh), write out what

each register will store. For store instructions (sw, sh, sb), update the memory

array accordingly. Recall that RISC-V is little-endian and byte addressable.

5.1 li t0 0x00FF0000

lw t1 0(t0)

addi t0 t0 4

lh t2 2(t0)

lw s0 0(t1)

lb s1 3(t2)

What value does each register hold after

the code is executed?

...

0x000C561C

36
...

0xFDFDFDFD

0xDEADB33F
...

0xC5161C00
...

0xFFFFFFFF

0x00FF0004

0x00FF0000

0x00000036

0x00000024

0x0000000C

0x00000000

5.2 li t0 0xABADCAFE

li t1 0xF9120504

li t2 0xBEEFCACE

sw t0 0(t1)

addi t1 t1 4

addi t0 t0 4

sh t1 2(t0)

sb t2 1(t2)

sb t2 3(t1)

sb t2 3(t0)

0x00000000

0xFFFFFFFF

0xF9120504

0xABADCAFE

0x00000004
0x00000000

Update the memory array with its new values after the code is executed. Some

memory addresses may not have been labeled for you yet.



6 Floating Point, RISC-V

6 Lost in Translation
6.1 Translate between the C and RISC-V verbatim.

C RISC-V

// s0 -> a, s1 -> b

// s2 -> c, s3 -> z

int a = 4, b = 5, c = 6, z;

z = a + b + c + 10;

// s0 -> int * p = intArr;

// s1 -> a;

*p = 0;

int a = 2;

p[1] = p[a] = a;

// s0 -> a, s1 -> b

int a = 5, b = 10;

if(a + a == b) {

a = 0;

} else {

b = a - 1;

}

addi s0, x0, 0

addi s1, x0, 1

addi t0, x0, 30

loop:

beq s0, t0, exit

add s1, s1, s1

addi s0, s0, 1

jal x0, loop

exit:

// s0 -> n, s1 -> sum

// assume n > 0 to start

for(int sum = 0; n > 0; n--) {

sum += n;

}


	Pre-Check
	Floating Point
	More Floating Point Representation
	Instructions
	Memory Access
	Lost in Translation

