
CS 61C RISC-V Calling Convention
Fall 2024 Discussion 4

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 After calling a function and having that function return, the t registers may have

been changed during the execution of the function, while a registers cannot.

False. a0 and a1 registers are often used to store the return value from a function,

so the function can set their values to the its return values before returning.

1.2 In order to use the saved registers (s0-s11) in a function, we must store their values

before using them and restore their values before returning.

True. The saved registers are callee-saved, so we must save and restore them at the

beginning and end of functions. This is frequently done in organized blocks of code

called the ”function prologue” and ”function epilogue”.

1.3 The stack should only be manipulated at the beginning and end of functions, where

the callee saved registers are temporarily saved.

False. While it is a good idea to create a separate ’prologue’ and ’epilogue’ to save

callee registers onto the stack, the stack is mutable anywhere in the function. A

good example is if you want to preserve the current value of a temporary register,

you can decrement the sp to save the register onto the stack right before a function

call.

2 Calling Convention
Let’s review what special meaning we assign to each type of register in RISC-V.

Register Convention Saver

x0 Stores zero N/A

sp Stores the stack pointer Callee

ra Stores the return address Caller

a0 - a7 Stores arguments and return

values

Caller

t0 - t6 Stores temporary values that do

not persist after function calls

Caller

s0 - s11 Stores saved values that persist

after function calls

Callee

To save and recall values in registers, we use the sw and lw instructions to save and

load words to and from memory, and we typically organize our functions as follows:

1 # Prologue

2 RISC-V Calling Convention

2 addi sp sp -8 # Room for two registers. (Why?)

3 sw s0 0(sp) # Save s0 (or any saved register)

4 sw s1 4(sp) # Save s1 (or any saved register)

5

6 # Code omitted

7

8 # Epilogue

9

10 lw s0 0(sp) #Load s0 (or any saved register)

11 lw s1 4(sp) #Load s1 (or any saved register)

12 addi sp sp 8 #Restore the stack pointer

Now, let’s see what happens if we ignore calling convention.

2.1 Consider the following blocks of code:

1 main:

2 # Prologue

3 # Saves ra

4

5 # Code omitted

6 addi s0 x0 5

7 # Breakpoint 1

8 jal ra foo

9 # Breakpoint 3

10 mul a0 a0 s0

11 # Code omitted

12

13 # Epilogue

14 # Restores ra

15 j exit

1 foo:

2 # Preamble

3 # Saves s0

4

5 # Code omitted

6 addi s0 x0 4

7 # Breakpoint 2

8

9 # Epilogue

10 # Restores s0

11 jr ra

(a) Does main always behave as expected, as long as foo follows calling convention?

Yes, since foo saves the saved registers, and main saves the return address

(b) What does s0 store at breakpoint 1? Breakpoint 2? Breakpoint 3?

5, then 4, then 5

(c) Now suppose that foo didn’t have a prologue or epilogue. What would s0 store

at each of the breakpoints? Would this cause errors in our code?

5, then 4, then still 4. This would cause errors, since we use the value of s0 in

our calculations.

In part (c) above, we saw one way how not following calling convention could make

our code misbehave. Other things to watch out for are: assuming that a or t registers

RISC-V Calling Convention 3

will be the same after calling a function, and forgetting to save ra before calling a

function.

Function myfunc takes in two arguments: a0, a1. The return value is stored in a0.

In myfunc, generate random is called. It takes in 0 arguments and stores its return

value in a0.

1 myfunc:

2 # Prologue (omitted)

3

4 addi t0 x0 1

5 slli t1 t0 2

6 add t1 a0 t1

7 add s0 a1 x0

8

9 jal generate_random

10

11 add t1 t1 a0

12 add a0 t1 s0

13

14 # Epilogue (omitted)

15 ret

2.2 Which registers, if any, need to be saved on the stack in the prologue?

s0, ra. We must save all s-registers we modify. In addition, if a function contains a

function call, register ra will be overwritten when the function is called (i.e. jal ra

label). ra must be saved before a function call. It is conventional to store ra in the

prologue (rather than just before calling a function) when the function contains a

function call. myfunc contains the function call generate random.

2.3 Which registers do we need to save on the stack before calling generate random?

t1.

Under calling conventions, all the t-registers and a-registers may be changed by

generate random, so we must store all of these which we need to know the value of

after the call. A total of 2 t-registers are used before calling generate random, t0

and t1, but only t1’s value is referenced again after the function call.

2.4 Which registers need to be recovered in the epilogue before returning?

s0, ra. This mirrors what we saved in the prologue.

4 RISC-V Calling Convention

3 Recursive Calling Convention
Write a function sum square in RISC-V that, when given an integer n, returns the

summation below. If n is not positive, then the function returns 0.

n2 + (n− 1)2 + (n− 2)2 + . . .+ 12

To implement this, we will use a tail-recursive algorithm that uses the a1 register to

help with recursion. More specifically, you will be writing the following function:

sum squares recursive: Return the value m+ n2 + (n− 1)2 + (n− 2)2 + . . .+ 12

Arguments
a0 A 32-bit number. n. You may assume n ≤ 10000.

a1 A 32-bit number. m.

Return value a0 m+ n2 + (n− 1)2 + (n− 2)2 + . . .+ 12. If n ≤ 0, return m.

When the above function is called with a1 set to 0, we will get the behavior that we

expect. For this problem, you are given a RISC-V function called square that takes

in a single integer and returns its square.

square: Square a number

Arguments a0 n.

Return value a0 n2

3.1 Since this is a recursive function, let’s start with the base case of our recursion.

sum_squares:

bge x0 a0 zero_case

To be implemented in the next question.

zero_case:

mv a0 a1

jr ra

3.2 Next, implement the recursive logic. Hint: If you let m′ = m+ n2, then

m+ n2 + (n− 1)2 + . . .+ 12 = m′ + (n− 1)2 + . . .+ 12

sum_squares:

Handle zero case (previous question)

_____________ zero_case

mv t0 a0

jal ra square

add a1 t0 a1

RISC-V Calling Convention 5

addi a0 t0 -1

jal ra sum_squares

jr ra

zero_case:

Handle zero case (previous question)

jr ra

3.3 Now, think about calling convention from the caller perspective. After the call to

square, what is in a0? a1? Which one of the registers will cause a calling convention

violation?

a0 will contain n2, and a1 will contain garbage data, causing a calling convention

violation. The register t0 will also hold garbage, which would also cause a CC

violation.

3.4 What about the recursive call? What will be in a0 after the call to sum squares?

a1?

a0 will contain m+ n2 + · · ·+ 12, and a1 will contain garbage data. However, since

a0 now contains the expected return value, we no longer care about the value in a1,

and can directly return — it is the job of whichever function called sum squares to

deal with saving caller-saved registers if they are still needed.

3.5 Now, go back and fix the calling convention issues you identified. Note that not all

blank lines may be used. There may also be another caller saved register that you

need to save as well!

sum_squares:

Handle zero case (previous question)

Save caller saved register on the stack

mv t0 a0

addi sp sp -12

sw a1 0(sp)

sw t0 4(sp)

sw ra 8(sp)

jal ra square

Restore register and stack

lw a1 0(sp)

lw t0 4(sp)

lw ra 8(sp)

addi sp sp 12

add a1 a0 a1

addi a0 t0 -1

6 RISC-V Calling Convention

addi sp sp -4

sw ra 0(sp)

jal ra sum_squares

lw ra 0(sp)

addi sp sp 4

jr ra

zero_case:

Handle zero case (previous question)

jr ra

3.6 Now, from a callee perspective, do we have to save any registers in the prologue

and epilogue? If yes, what registers do we have to save, and where do we place the

prologue and epilogue? If no, briefly explain why.

No, we do not have to take callee saved registers into account because we do not use

any callee saved registers. However, since we call two functions, it is possible to save

ra in the prologue and restore it in an epilogue immediately before the jr ra before

the zero case label.

	Pre-Check
	Calling Convention
	Recursive Calling Convention

