
CS 61C Instruction Translation, CALL
Fall 2024 Discussion 5

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 The compiler may output pseudoinstructions.

1.2 The main job of the assembler is to perform optimizations on the assembly code.

1.3 The object files produced by the assembler are only moved, not edited, by the linker.

1.4 The destination of all jump instructions is completely determined after linking.

2 Instruction Translation, CALL

2 Translation
2.1 In this question, we will be translating between RISC-V code and binary/hexadecimal

values.

Translate the following RISC-V instructions into binary and hexadecimal notations.

1 addi s1 x0 -24 = 0b______________________________ = 0x____________

2 sh s1 4(t1) = 0b______________________________ = 0x____________

2.2 In this question, we will be translating between RISC-V code and binary/hexadecimal

values.

Translate the following hexadecimal values into the relevant RISC-V instruction.

1 0x234554B7 = _________________________________

2 0xFE050CE3 = _________________________________

Instruction Translation, CALL 3

3 RISC-V Addressing
We have several addressing modes to access memory (immediate not listed):

1. Base displacement addressing adds an immediate to a register value to create

a data memory address (used for lw, lb, sw, sb).

2. PC-relative addressing uses the PC and adds the immediate value of the

instruction (multiplied by 2) to create an instruction address (used by branch

and jump instructions).

3. Register Addressing uses the value in a register as an instruction address. For

instance, jalr, jr, and ret, where jr and ret are just pseudoinstructions that

get converted to jalr.

3.1 What is the range of 32-bit instructions that can be reached from the current PC

using a branch instruction? Recall that RISC-V supports 16b instructions via an

extension.

3.2 What is the maximum range of 32-bit instructions that can be reached from the

current PC using a jump instruction?

3.3 Given the following RISC-V code (and instruction addresses), fill in the blank fields

for the following instructions (you’ll need your RISC-V reference sheet!). Each field

refers to a different block of the instruction encoding.

1 0x002cff00: loop: add t1, t2, t0 |________|________|________|________|________|__0x33__|

2 0x002cff04: jal ra, foo |__________________________|_________________|__0x6F__|

3 0x002cff08: bne t1, zero, loop |________|________|________|________|________|__0x63__|

4 ...

5 0x002cff2c: foo: jr ra ra =

4 Instruction Translation, CALL

4 CALL
The following is a diagram of the CALL stack detailing how C programs are built

and executed by machines.

Source files: foo.c

C Preprocessor

Intermediate files: foo.i, foo.ii

Compiler

Assembly files: foo.s

Assembler

Object files: foo.o

Linker Libs

Execeutable files: foo.out

Loader (OS)

Memory

4.1 How many passes through the code does the Assembler have to make? Why?

4.2 Which step in CALL resolves relative addressing? Absolute addressing?

4.3 Describe the six main parts of the object files outputted by the Assembler (Header,

Text, Data, Relocation Table, Symbol Table, Debugging Information).

	Pre-Check
	Translation
	RISC-V Addressing
	CALL

