
CS 61C PLP, TLP
Fall 2024 Discussion 11

1 Thread-Level Parallelism
OpenMP provides an easy interface for using multithreading within C programs.
Some examples of OpenMP directives:

• The parallel directive indicates that each thread should run a copy of the
code within the block. If a for loop is put within the block, every thread will
run every iteration of the for loop.

#pragma omp parallel
{

...
}

NOTE: The opening curly brace needs to be on a newline or else there will
be a compile-time error!

• The parallel for directive will split up iterations of a for loop over various
threads. Every thread will run different iterations of the for loop. The
exact order of execution across all threads, as well as the number of iterations
each thread performs, are both non-deterministic, as the OpenMP library
load balances threads for performance. The following two code snippets are
equivalent.

#pragma omp parallel for
for (int i = 0; i < n; i++) {

...
}

#pragma omp parallel
{
#pragma omp for

for (int i =0; i < n; i++) { ... }
}

There are two functions you can call that may be useful to you:

• int omp_get_thread_num() will return the number of the thread executing
the code

• int omp_get_num_threads() will return the number of total hardware threads
executing the code

1.1 For each question below, state and justify whether the program is sometimes
incorrect, always incorrect, slower than serial, faster than serial, or none
of the above. Assume the number of threads can be any integer greater than
1. Assume no thread will complete in its entirety before another thread starts
executing. Assume arr is an int[] of length n.

(a) // Set element i of arr to i
#pragma omp parallel
{



2 PLP, TLP

for (int i = 0; i < n; i++)
arr[i] = i;

}

Slower than serial: There is no for directive, so every thread executes this
loop in its entirety. n threads running n loops at the same time will actually
execute in the same time as 1 thread running 1 loop. The values should all
be correct at the end of the loop since each thread is writing the same values.
Furthermore, the existence of parallel overhead due to the extra number of
threads will slow down the execution time.

(b) // Set arr to be an array of Fibonacci numbers.
arr[0] = 0;
arr[1] = 1;
#pragma omp parallel for
for (int i = 2; i < n; i++)

arr[i] = arr[i-1] + arr[i - 2];

Sometimes incorrect: While the loop has dependencies from previous data, in
a interweaved scheme where the threads take turns completing each iteration
in sequential order (e.g.

1 for (int i = omp_get_thread_num(); i < n; i += omp_get_num_threads())

is the work allocation per thread and the order of execution is based on the
shared variable i from 2 to n), each thread will have the correctly updated
shared arr to compute the next Fibonacci number. Note that this scheme
would still be slower than serial due to the amount of overhead required as the
threads need to wait for each other’s execution to finish as well as deal with
coherency issues regarding the shared data.

(c) // Set all elements in arr to 0;
int i;
#pragma omp parallel for
for (i = 0; i < n; i++)

arr[i] = 0;

Faster than serial: The for directive automatically makes loop variables (such
as the index) private, so this will work properly. The for directive splits up
the iterations of the loop to optimize for efficiency, and there will be no data
races.

(d) // Set element i of arr to i;
int i;
#pragma omp parallel for
for (i = 0; i < n; i++)

*arr = i;
arr++;



PLP, TLP 3

Sometimes incorrect: Because we are not indexing into the array, there is a
data race to increment the array pointer. If multiple threads are executed such
that they all execute the first line, *arr = i; before the second line, arr++;,
they will clobber each other’s outputs by overwriting what the other threads
wrote in the same position. However, taking a similar interweaved scheme as
in 4.1b, there is an order that will not encounter data races, though it will be
slower than serial.



4 PLP, TLP

2 Locks and Critical Sections
2.1 Consider the following multithreaded code to compute the product over all elements

of an array.

1 // Assume arr has length 8*n.
2 double fast_product(double *arr, int n) {
3 double product = 1;
4 #pragma omp parallel for
5 for (int i = 0; i < n; i++) {
6 double subproduct = arr[i*8]*arr[i*8+1]*arr[i*8+2]*arr[i*8+3]
7 * arr[i*8+4]*arr[i*8+5]*arr[i*8+6]*arr[i*8+7];
8 product *= subproduct;
9 }

10 return product;
11 }

(a) What is wrong with this code?

The code has the shared variable product, which can cause data races when
multiple threads access it simultaneously.

(b) Fix the code using #pragma omp critical. What line would you place the
directive on to create that critical section?

1 double fast_product(double *arr, int n) {
2 double product = 1;
3 #pragma omp parallel for
4 for (int i = 0; i < n; i++) {
5 double subproduct = arr[i*8]*arr[i*8+1]*arr[i*8+2]*arr[i*8+3]
6 * arr[i*8+4]*arr[i*8+5]*arr[i*8+6]*arr[i*8+7];
7 #pragma omp critical
8 product *= subproduct;
9 }
10 return product;
11 }

2.2 When added to a #pragma omp parallel for statement, the reduction(operation
: var) directive creates and optimizes the critical section for a for loop, given a
variable that should be in the critical section and the operation being performed on
that variable. An example is given below.

1 // Assume arr has length n
2 int fast_sum(int *arr, int n) {
3 int result = 0;
4 #pragma omp parallel for reduction(+: result)
5 for (int i = 0; i < n; i++) {
6 result += arr[i];
7 }
8 return result;



PLP, TLP 5

9 }

Fix the code by adding the reduction(operation: var) directive to the #pragma
omp parallel for statement. Which variable should be in the critical section,

and what is the operation being performed?

1 double fast_product(double *arr, int n) {
2 double product = 1;
3 #pragma omp parallel for reduction (*:product)
4 for (int i = 0; i < n; i++) {
5 double subproduct = arr[i*8]*arr[i*8+1]*arr[i*8+2]*arr[i*8+3]
6 * arr[i*8+4]*arr[i*8+5]*arr[i*8+6]*arr[i*8+7];
7 product *= subproduct;
8 }
9 return product;

10 }



6 PLP, TLP

3 Multi-Process Code
One advantage of process-level parallelism is that we have freedom to do complex
tasks without worrying about race conditions in memory due to processes not shar-
ing memory. Examine the code snippet below to answer the questions.

int x = 10;
int y = 0;

// Split into two processes

if (/* Is Process 1 */) { y++; }
if (/* Is Process 2 */) { x--; }

3.1 After the code segment completes, what will be the values of x and y for Process
1?

x = 10;
y = 1;

Notice that only the value of y changes. This is because when we create a new
processes, it is given a separate address space. This enforces the separation between
processes that provides security within a system.

3.2 After the code segment completes, what will be the values of x and y for Process
2?

x = 9;
y = 0;

Notice that only the value of x changes. This is when a new process is created, it
is initialized with a separate address space.



PLP, TLP 7

4 Manager-Worker Framework
Recall the manager-worker pseudocode:

Manager: Worker:

setup
while there is work to do:

wait for a worker to ask for work
find the next task to do
assign that task

for each worker:
wait for a worker to ask for work
tell the worker that work is done

teardown

setup
done = False
while not done:

ask manager for work
if reply is a task:

do the task
if reply is work is done:

done = True
teardown

Out of all the steps above, one step is notably more interesting than the rest —
how the manager chooses the next task to do. For this part, assume we have the
following list of tasks, which each take some specified amount of time to complete:

Task # 1 2 3 4 5 6 7 8
Time (s) 8 2 1 3 2 1 1 6

Suppose that we have 1 manager and 2 workers. List out the tasks assigned to
each worker, and the total amount of time taken if the manager assigns tasks... (if
multiple tasks can be assigned, the one with the smallest number is chosen)

4.1 ...by choosing the task that takes the shortest amount of time to do.

The tasks would be assigned as follows:

Time (sec) 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Worker 1 3 7 5 8 Idle
Worker 2 6 2 4 1

In total, this takes 14 seconds to complete all the tasks.

4.2 ...by choosing the task that takes the longest amount of time to do.

The tasks would be assigned as follows:

Time (sec) 1 2 3 4 5 6 7 8 9 10 11 12
Worker 1 1 2 6 7
Worker 2 8 4 5 3

In total, this takes 12 seconds to complete all the tasks.

4.3 ...by choosing the task with the smallest task number.

The tasks would be assigned as follows:

Time (sec) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Worker 1 1 6 8
Worker 2 2 3 4 5 7 Idle



8 PLP, TLP

In total, this takes 15 seconds to complete all the tasks.

4.4 Compare the above approaches to assigning work. Which ones were the fastest? The
slowest? Are there any benefits / approaches to each of these techniques beyond
completion time?

The fastest method was assigning the task that takes the longest to complete, and
the slowest was assigning tasks sequentially. As a preview to CS162, one other thing
to consider could be that maybe we want lower tasks to finish first (e.g. if these
tasks arrived first).


	Thread-Level Parallelism
	Locks and Critical Sections
	Multi-Process Code
	Manager-Worker Framework

