
CS61C Garcia, Kao
Fall 2024 Final

Solutions last updated: Sunday, December 22, 2024
Print Your Name:

Print Your Student ID:

You have 170 minutes. There are 11 questions of varying credit. (100 points total)

Question: 1 2 3 4 5 6 7 8 9 10 11 Total
Points: 8 12 7 10 6 8 14 14 11 10 0 100

For questions with circular bubbles, you may
select only one choice.

Unselected option (Completely unfilled)

Don’t do this (it will be graded as incorrect)

Only one selected option (completely filled)

For questions with square checkboxes, you may
select one or more choices.

You can select

multiple squares

(Don’t do this)

Anything you write outside the answer boxes or you cross out will not be graded. If you write multiple
answers, your answer is ambiguous, or the bubble/checkbox is not entirely filled in, we will grade the
worst interpretation. For coding questions with blanks, you may write at most one statement per blank
and you may not use more blanks than provided.

If an answer requires hex input, you must only use capitalized letters (0xDEADBEEF instead of
0xdeadbeef). For hex and binary, please include prefixes in your answers unless otherwise specified,
and do not truncate any leading 0’s. For all other bases, do not add any prefixes or suffixes.

Write the statement below in the same handwriting you will use on the rest of the exam.

I have neither given nor received help on this exam (or quiz), and have rejected any attempt to cheat;
if these answers are not my own work, I may be deducted up to 0x0123 4567 89AB CDEF points.

Sign your name:

Page 1 of 20

This content is protected and may not be shared, uploaded, or distributed.

Clarifications made during the exam:

Q5.1: s0 is initialized and does not cause memory access errors or hazards.

Q5.3: s1 is initialized and does not cause memory access errors or hazards.

There is no Q7.5 on the exam. The question numbers go from Q7.4 to Q7.6.

For Q7.7, there should be no brackets surrounding the answer blank. (fixed)

For Q9.6, the virtual address should be 0x000245 and not 0x002045. (fixed)

For the FSM diagram on Q10, the state transition from State 4 to State 4 should be labeled “1/0” and
not “0/1.” (fixed)

Final Page 2 of 20 CS61C — Fall 2024

This content is protected and may not be shared, uploaded, or distributed.

This page left intentionally (mostly) blank

The exam begins on the next page.

Final Page 3 of 20 CS61C — Fall 2024

This content is protected and may not be shared, uploaded, or distributed.

Q1 Potpourri (8 points)

Q1.1 (3 points) Consider an 8-bit floating point format that follows the IEEE-754 standard, with 1 sign
bit, 4 exponent bits (with a standard bias of −7), and 3 mantissa bits.

What is the minimum distance between any two denormalized numbers in this floating point
format? Express your answer as a power of 2.

2−9

Q1.2 (3 points) Consider the following multi-threaded code block.

1 int32_t a = 0;
2 int32_t b = 2;
3
4 #pragma omp parallel {
5 while (b > 0) {
6 a = a + b;
7 #pragma omp critical {
8 b = b - 1;
9 }
10 }
11 }

If we run this code with two threads, what is the largest possible value of a after both threads finish
execution?

Note that the expression a = a + b is equivalent to four instructions: load the value of a, load the
value of b, sum a and b, and then store the result in a.

5

Q1.3 (2 points) Select all true statements about the manager-worker framework.

If one program crashes, the others keep going.

Programs communicate by sending messages between each other.

The manager-worker framework splits a problem into independent subtasks and tries to
minimize communication between programs.

The manager is able to assign a task to a worker before the worker is ready.

None of the above

Final Page 4 of 20 CS61C — Fall 2024

This content is protected and may not be shared, uploaded, or distributed.

Q2 LibraR(y)ISC-V (12 points)
1 typedef struct {
2 uint32_t page_num;
3 char *content;
4 uint32_t is_read; // 0 if unread, 1 if read
5 } page_t;
6
7 typedef struct {
8 page_t *pages; // array of pages
9 page_t *bookmark; // pointer to the first unread page
10 } book_t;

Implement read_pages to match the described behavior.

read_pages: Sets is_read to 1 for the next n pages of a book_t, starting from the bookmark.
read_pages updates the bookmark and pages in place.

 a0 A pointer to a book_t struct with at least n pages after the bookmark.
Arguments

 a1 n, the number of pages to mark as read.
Return value void

Unfortunately, Anto has spilled apple juice on your compiler, so you need to fill in the read_pages
function in RISC-V.

A struct stores only its members, with no metadata and no extra compiler padding. For example, if a
page_t struct is located at address 0x1000, its page_num is at 0x1000 and its content is at 0x1004.

1 read_pages:

2 lw
Q2.1

 t3 4
Q2.2

(a0
Q2.3

) # bookmark

3 li t1 1
4 loop:

5 beq a1 x0 end
Q2.4

6 sw t1 8(t3)
Q2.5

7 addi t3 t3 12
Q2.6

8 addi a1 a1 -1
Q2.7

9 j loop
10 end:

11 sw
Q2.8

 t3 4
Q2.9

(a0
Q2.10

)

12 ret

Final Page 5 of 20 CS61C — Fall 2024

This content is protected and may not be shared, uploaded, or distributed.

Q3 MixC Mystery (7 points)

Consider the mystery function, which takes in one argument in a0, and returns one output in a0.

1 mystery:
2 lbu t0 0(a0)
3 li a0 0
4 loop:
5 andi t1 t0 1
6 add a0 a0 t1
7 srai t0 t0 1
8 bne t0 x0 loop
9 ret

Q3.1 (1 point) What does the mystery function return?

Bitwise and of 0x01 and the byte pointed to by a0

Number of binary 1s in the byte pointed to by a0

Always returns 8

For Q3.2 – Q3.4, suppose we replaced the lbu on line 2 with lb, which introduces a bug. The buggy
mystery and the original mystery now behave differently. To help find the difference between their
behaviors, we use the C function defined below:

1 void mysterytest(uint8_t n) {
2 printf("%d\n", mystery(&n));
3 }

Q3.2 (3 points) Complete the following sentence:

If the value of n is 0x91, the original mystery printed the decimal value…

3

however, the buggy mystery instead…

prints 0 prints 27 segfaults infinitely loops

Q3.3 (2 points) What is the smallest 8-bit value of n that results in the buggy behavior?

0x80

Q3.4 (1 point) Which section of memory does the symbol n live in?

Code Static Heap Stack

Final Page 6 of 20 CS61C — Fall 2024

This content is protected and may not be shared, uploaded, or distributed.

Q4 Datapath Jadditions (10 points)

For this question, assume we are working with the single-cycle datapath.

A jaddi instruction in RISC-V is a new instruction described as follows:

jaddi rd rs1 imm

1 rd = rs1 + imm
2 PC = rs1 + imm

For each of the control signals, indicate the value it should always have for jaddi. You may assume that
we only jump to word-aligned addresses.

Q4.1 (1 point) PCSel

PC + 4 ALU output Doesn’t matter

Q4.2 (1 point) ASel

RegReadData1 PC Doesn’t matter

Q4.3 (1 point) BSel

RegReadData2 ImmGen output Doesn’t matter

Q4.4 (1 point) ALUSel

add

sub

and

or

Doesn’t matter

Q4.5 (1 point) MemRW

Memory read Memory write Doesn’t matter

Q4.6 (1 point) WBSel

Mem

PC + 4

ALU output Doesn’t matter

Q4.7 (1 point) RegWEn

Write enabled Write disabled Doesn’t matter

Final (Question 4 continues…) Page 7 of 20 CS61C — Fall 2024

This content is protected and may not be shared, uploaded, or distributed.

(Question 4 continued…)

Consider the new instruction jalm below.

jalm rd imm(rs1)

1 rd = PC + 4
2 PC = 4 bytes of memory starting at address (rs1 + imm)

Q4.8 (3 points) What additional changes, if any, would we need to make to our single-cycle datapath in
order for us to implement jalm (with as few changes as possible)? Select all that apply.

Create a new instruction type and update the ImmGen.

Add a new read input to the RegFile for a third register value.

Add a new WriteData and WriteIndex input to the RegFile.

Add a third possible value for ASel and update the corresponding MUX/control logic.

Add a third possible value for BSel and update the corresponding MUX/control logic.

Add a new ALU operation and update any relevant selector/control logic.

Add a third possible value for PCSel and update the corresponding MUX/control logic.

Allow the DMEM to be able to read and write at the same clock cycle and update any relevant
selector/control logic.

Add a new read input to DMEM for a second memory read output.

Add a fourth possible value for WBSel and update the corresponding MUX/control logic.

None of the above

Final Page 8 of 20 CS61C — Fall 2024

This content is protected and may not be shared, uploaded, or distributed.

Q5 Hazardous Ordering (6 points)

In this question, use the five-stage pipeline on the reference card. Assume that:
• The RegFile can perform write-then-read on the same clock cycle (also called double pumping).
• There is no forwarding.
• We always predict that the branch is not taken.

For questions Q5.1 – Q5.2, identify the number of stalls needed and the hazard type between the indicated
lines in the code block below. If you select None as the hazard type, write “N/A” in the box.

1 addi t0 x0 1
2 lw t1 0(s0)
3 sw t1 4(s0)

Q5.1 (2 points) Between lines 1 and 2:

N/A stall(s)
Control

Data

Structural

None

Q5.2 (2 points) Between lines 2 and 3:

2 stall(s)
Control

Data

Structural

None

Q5.3 (2 points) Rearrange the instructions below to minimize the number of stalls while maintaining the
same behavior.

1 addi t0 x0 4 # Instruction A
2 addi t1 t0 4 # Instruction B
3 lw s0 0(s1) # Instruction C
4 add a0 s0 t1 # Instruction D

Format your answer as a comma-separated list. For example, the instruction order in the code block
above would be described as “A, B, C, D”.

A, C, B, D

Final Page 9 of 20 CS61C — Fall 2024

This content is protected and may not be shared, uploaded, or distributed.

Q6 Separate Timings (8 points)

In this question, assume that:
• All registers are initialized to 0.
• The 32-bit tunnels In, Out1, and Out2 are directly connected to registers.
• The select bit of the MUX is wired to bit 31 of In via the splitter.
• The NOT gate outputs the bitwise not of its input (e.g. not(0b01010) == 0b10101).

𝑡clk-to-q = 10ns 𝑡setup = 5ns 𝑡not = 30ns
𝑡mux = 15ns 𝑡adder = 10ns 𝑡subtractor = 20ns

Q6.1 (2 points) What is the minimum clock period for this circuit to function properly, in nanoseconds?

90 ns

Q6.2 (2 points) What is the maximum hold time for this circuit to function properly, in nanoseconds?

30 ns

Q6.3 (2 points) If we pass In = −6 to the circuit as a 32-bit two’s complement integer, what will the
output at Out1 be, in decimal?

6

Final (Question 6 continues…) Page 10 of 20 CS61C — Fall 2024

This content is protected and may not be shared, uploaded, or distributed.

(Question 6 continued…)

We want to improve the performance of this circuit by adding a single pipeline register to create a two-
stage pipeline. Three possible separations between the stages are drawn on the circuit diagram below.

The delays are repeated for your convenience:

𝑡clk-to-q = 10ns 𝑡setup = 5ns 𝑡not = 30ns
𝑡mux = 15ns 𝑡adder = 10ns 𝑡subtractor = 20ns

Q6.4 (2 points) Which separation allows for the highest possible clock frequency? Explain in ten words
or fewer.

Separation A Separation B Separation C

Results in the smallest critical path

Final Page 11 of 20 CS61C — Fall 2024

This content is protected and may not be shared, uploaded, or distributed.

Q7 Caches (14 points)

Q7.1 (2 points) What is the tag-index-offset breakdown of a 256B, fully-associative cache with a 32B
block size on a 16-bit system?

Tag: 11 bit(s) Index: 0 bit(s) Offset: 5 bit(s)

For Q7.2 – Q7.4, assume we are using a 2-way set-associative cache with a First-In-First-Out (FIFO)
replacement policy, and each address has 9 tag bits, 3 index bits, and 4 offset bits.

You may assume the following:
• The cache starts out empty.
• In expressions of the form a += b, a is read first, then b is read, and then a is written.

1 int32_t arr[32 * 32]; // arr starts at address 0x0100
2 for (register int32_t i = 0; i < 32 ; i++) {
3 for (register int32_t j = 1; j < 32; j++) {
4 arr[i] += arr[32 * j + i];
5 }
6 }

Q7.2 (2 points) Which address is accessed on the first compulsory miss?

0x0100

Q7.3 (2 points) How many cache hit(s) occur on the first execution of the innermost statement?
(i = 0, j = 1)

0 hits 1 hit 2 hits 3 hits

Q7.4 (2 points) How many cache hit(s) occur on the second execution of the innermost statement?
(i = 0, j = 2)

0 hits 1 hit 2 hits 3 hits

Final (Question 7 continues…) Page 12 of 20 CS61C — Fall 2024

This content is protected and may not be shared, uploaded, or distributed.

(Question 7 continued…)

For Q7.6 – Q7.9, complete the code below to be more cache-efficient while maintaining the same behavior
as above. You may assume the original cache parameters: 2-way set-associative cache with 9 tag bits, 3
index bits, 4 offset bits, and FIFO replacement policy.

1 int32_t arr[32 * 32]; // arr starts at address 0x0100

2 for (register int32_t i =
Q7.6

; i < 32; i++) {

3 for (register int32_t j =
Q7.7

; j < 32; j++) {

4 arr[
Q7.8

] += arr[
Q7.9

];
5 }
6 }

Q7.6 (1 point) 1 0 31 32 * 32

Q7.7 (1 point) 1 0 31 32 * 32

Q7.8 (1 point) i j 32 * i 32 * j

Q7.9 (1 point) 32 * i 32 * j 32 * j + i 32 * i + j

Q7.10 (2 points) Consider the two below memory systems:

Hit Time Hit Rate
L1 Cache 10ns 60%
DRAM 100ns 100%

Hit Time Hit Rate
L1 Cache 10ns 60%
L2 Cache 70ns ?
DRAM 100ns 100%

If the AMAT (average memory access times) of the two systems are equal, what is the local hit rate
of the L2 Cache in the right system?

Hit Rate: 70%

Final Page 13 of 20 CS61C — Fall 2024

This content is protected and may not be shared, uploaded, or distributed.

Q8 is_odd_and_parallel (14 points)

Taki is given a sequence of characters and needs to find the odd characters. An odd character is a character
that appears an odd number of times in the sequence. Help Taki by implementing the below function.

get_odd_characters:

 uint32_t *seq An array of characters. Each character is zero-extended to 32 bits
and stored in a uint32_t.Arguments

 int size The number of characters in seq.
Return value uint32_t A bit array of the characters that are odd, stored in a uint32_t.

For example, given the characters a c c h h h b:
• The odd characters are a h b.
• get_odd_characters should return 0b0000 0000 0000 0000 0000 0000 1000 0011, a bit array

where each bit corresponds to a character, where bit 0 corresponds to a, and bit 25 corresponds to z.
(Note that bits 26–31 are unused.)

Here is a correct implementation of get_odd_characters. Your answer should have the same behavior.

1 uint32_t get_odd_characters(uint32_t *seq, int size) {
2 uint32_t res = 0;
3 for (int i = 0; i < size, i++) {
4 res ^= 1 << (seq[i] - 0x61);
5 }
6 return res;
7 }

You have access to the following SIMD operations. A vector is a 128-bit vector register capable of holding
four 32-bit integers:

• vector vec_load(uint32_t *A): Loads four integers at memory address A into a vector.
• void vec_store(uint32_t *dst, vector src): Stores src to dst.
• vector vec_setnum(uint32_t num): Creates a vector where every element is equal to num.
• vector vec_and(vector A, vector B): Returns the result of ANDing A and B element-wise.
• vector vec_or (vector A, vector B): Returns the result of ORing A and B element-wise.
• vector vec_xor(vector A, vector B): Returns the result of XORing A and B element-wise.
• vector vec_add(vector A, vector B): Returns the result of adding A and B element-wise.
• vector vec_sub(vector A, vector B): Returns the result of subtracting B from A element-wise.
• vector vec_sll(vector A, vector count): Returns the result of left-shifting each element in A

by the number of bits specified in the corresponding element of count.

Final (Question 8 continues…) Page 14 of 20 CS61C — Fall 2024

This content is protected and may not be shared, uploaded, or distributed.

(Question 8 continued…)

Implement get_odd_characters to match the described behavior using SIMD. You may use at most
one SIMD instruction per line.

1 uint32_t get_odd_characters(uint32_t* seq, int size) {
2 uint32_t res = 0;
3 vector res_vec = vec_setnum(0);
4 vector ones = vec_setnum(1);
5 vector offset = vec_setnum(0x61);

6 for (int i = 0; i < size / 4 * 4
Q8.1

; i += 4
Q8.2

) {

7 vector a = vec_load(seq + i)
Q8.3

;

8 vector b = vec_sub(a, offset)
Q8.4

;

9 vector c = vec_sll(ones, b)
Q8.5

;

10 res_vec = vec_xor(res_vec, c)
Q8.6

;

11 }
12 uint32_t arr[4];

13 vec_store((vector *) arr, res_vec
Q8.7

);

14 res = arr[0] ^ arr[1] ^ arr[2] ^ arr[3]
Q8.8

;

15

16 for (int i = size / 4 * 4
Q8.9

; i < size; i++) {

17 res ^= 1 << (seq[i] - 0x61);
18 }
19 return res;
20 }

Final Page 15 of 20 CS61C — Fall 2024

This content is protected and may not be shared, uploaded, or distributed.

Q9 Virtually Valid (11 points)

For FIXME, suppose we have a system with 4 GiB of virtual memory, 1 GiB of physical memory, 4 KiB
pages, and 4B page table entries.

Q9.1 (2 points) How many bits are in the Virtual Page Number (VPN), Physical Page Number (PPN), and
Page Offset?

VPN: 20 bit(s) PPN: 18 bit(s) Offset: 12 bit(s)

Q9.2 (1 point) How many entries are in the page table? You may express your answer as a power of 2.

220

Q9.3 (2 points) How many physical pages are needed to store the page table? You may express your
answer as a power of 2.

Reminder: Page table entries are 4 bytes each.

210

Final (Question 9 continues…) Page 16 of 20 CS61C — Fall 2024

This content is protected and may not be shared, uploaded, or distributed.

(Question 9 continued…)

For the remaining parts, assume we have 16-bit VPNs, 12-bit PPNs, 8-bit page offsets, and 32-bit page
table entries. The TLB and the first six entries of the page table are shown below.

The next available free page has PPN 0x42D.

Page Table
0xB61C 0483
0xFB83 A61C
0x8483 3F01
0x7ABC 4103
0xC012 F7CB
0x15DA C203

...

TLB
Valid VPN PPN
1 0x0000 0x483
1 0x0001 0x61C
0 0x0002 0xB83
0 0x0005 0x483

Each page table entry (PTE) is formatted as:

1 Valid Bit 19 Status Bits 12 PPN Bits

For each of the following virtual addresses, translate it to its corresponding physical address and answer
whether accessing it will result in a TLB hit, TLB miss and page table hit, or a page fault. Assume each
access occurs independently, not sequentially.

Q9.4 (2 points) 0x000529

0x42D29
TLB Hit

TLB Miss and Page Table Hit

Page Fault

Q9.5 (2 points) 0x00018D

0x61C8D
TLB Hit

TLB Miss and Page Table Hit

Page Fault

Q9.6 (2 points) 0x000245

0xF0145
TLB Hit

TLB Miss and Page Table Hit

Page Fault

Final Page 17 of 20 CS61C — Fall 2024

This content is protected and may not be shared, uploaded, or distributed.

Q10 Five diviSion Machine (10 points)

Implement an FSM that returns 1 if the input bits so far, interpreted as an unsigned binary number, are
divisible by 5. You may assume that the most significant bit is the first bit passed in.

Reminder: 0 is divisible by 5.

Hint 1: States 0, 1, 2, 3, 4 represent the current number having a remainder of 0, 1, 2, 3, and 4 when
divided by 5, respectively.

Hint 2: If you have a binary number 𝑎 = 0bXXX, then 0bXXX1 = 2𝑎 + 1 and 0bXXX0 = 2𝑎.

0/1

1/0

Q10.1 Q10.2

1/0

Q10.3 Q10.4

Q10.5Q10.6

0/0

Q10.7

Q10.8

Q10.9

Q10.10

1/0

0 1

2

34

Example Input 01010101
Example Output 10011001

For the above example, the following table summarizes the computations performed by the FSM.

Input bits so far Value of input bits in decimal FSM Output
0 0 1
01 1 0
010 2 0
0101 5 1
01010 10 1
010101 21 0
0101010 42 0
01010101 85 1

Final (Question 10 continues…) Page 18 of 20 CS61C — Fall 2024

This content is protected and may not be shared, uploaded, or distributed.

(Question 10 continued…)

Fill out the transitions below. For any unused transitions, select N/A.

Q10.1 (1 point) Transition 0 → 2

0/0 0/1 1/0 1/1 N/A

Q10.2 (1 point) Transition 1 → 2

0/0 0/1 1/0 1/1 N/A

Q10.3 (1 point) Transition 2 → 0

0/0 0/1 1/0 1/1 N/A

Q10.4 (1 point) Transition 2 → 1

0/0 0/1 1/0 1/1 N/A

Q10.5 (1 point) Transition 2 → 3

0/0 0/1 1/0 1/1 N/A

Q10.6 (1 point) Transition 2 → 4

0/0 0/1 1/0 1/1 N/A

Q10.7 (1 point) Transition 3 → 2

0/0 0/1 1/0 1/1 N/A

Q10.8 (1 point) Transition 3 → 4

0/0 0/1 1/0 1/1 N/A

Q10.9 (1 point) Transition 4 → 2

0/0 0/1 1/0 1/1 N/A

Q10.10 (1 point) Transition 4 → 3

0/0 0/1 1/0 1/1 N/A

Final Page 19 of 20 CS61C — Fall 2024

This content is protected and may not be shared, uploaded, or distributed.

Q11 61Crossword (0 points)

These questions will not be assigned credit; feel free to leave them blank.

Q11.1 Fill out the 61Crossword!

1
C H I

2
P M U N K

I
3
M P

O
4
S E

5
S

6
O V E R F L O W

N R G I
7
D E A D B E E F N

K A I
8
W E N

9
C U N

10
C A L L G

C T

H

E

Across
1. CS61C Fall 2024′s mascot

🐿, perhaps a pun on the
class logo?

6. 0xFFFFFFFF + 0x00000001
causes?

7.
💀🥩?

8. Abbr. for Write Enable, or a
certain staff member?

10. _ _ _ _ me maybe?

Down
2. Makes doing laundry faster

(and the CPU)
3. _ _ _ _ _‘s law of transistor

scaling?
4. Memory access errors, taken

care of by a certain fairy?
5. Animal featured in Project 1,

rhyming with cake? 🎂
9.
💸?

Q11.2 If there’s anything else you want us to know, or you feel like there was an ambiguity in the exam,
please put it in the box below.

For ambiguities, you must qualify your answer and provide an answer for both interpretations. For
example, “if the question is asking about A, then my answer is X, but if the question is asking about
B, then my answer is Y”. You will only receive credit if it is a genuine ambiguity and both of your
answers are correct. We will only look at ambiguities if you request a regrade.

Final Page 20 of 20 CS61C — Fall 2024

This content is protected and may not be shared, uploaded, or distributed.

	Potpourri
	LibraR(y)ISC-V
	MixC Mystery
	Datapath Jadditions
	Hazardous Ordering
	Separate Timings
	Caches
	is_odd_and_parallel
	Virtually Valid
	Five diviSion Machine
	61Crossword

