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1 Precheck: Number Representation
1.1 Depending on the context, the same sequence of bits may represent different things.

True. The same bits can be interpreted in many different ways with the exact same bits! The bits
can represent anything from an unsigned number to a signed number or even, as we will cover
later, a program. It is all dependent on its agreed upon interpretation.

1.2 It is possible to get an overflow error in Two’s Complement when adding numbers of opposite
signs.

False. Overflow errors only occur when the correct result of the addition falls outside the range
of [−2𝑛−1, 2𝑛−1 − 1]. Adding numbers of opposite signs will not result in numbers outside of
this range.

1.3 If you interpret an 𝑛-bit Two’s complement number as an unsigned number, negative numbers
would be smaller than positive numbers.

False. In Two’s Complement, the MSB is always 1 for a negative number. This means EVERY
negative number in Two’s Complement, when converted to unsigned, will be larger than the
positive numbers.

1.4 If you interpret an 𝑛-bit Bias notation number as an unsigned number (assume there are negative
numbers for the given bias), negative numbers would be smaller than positive numbers.

True. In bias notation, we add a bias to the unsigned interpretation to create the value. Regardless
of where we ‘shift’ the range of representable values, the negative numbers, when converted to
unsigned, will always stay smaller than the positive numbers. This is unlike Two’s Complement
(see description above).

1.5 We can represent fractions and decimals in our given number representation formats (unsigned,
biased, and Two’s Complement).

False. Our current representation formats has a major limitation; we can only represent and do
arithmetic with integers. To successfully represent fractional values as well as numbers with
extremely high magnitude beyond our current boundaries, we need another representation
format.

2 Unsigned and Signed Integers
2.1 Convert the following numbers from their initial radix into the other two common radices:
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2 Number Representation

(a) 0b10110011
Decimal: 147, Hex: 0x93

(b) 0
Binary: 0b0, Hex: 0x0

(c) 437
Binary: 0b110110101, Hex: 0x1B5

(d) 0x0123

Binary: 0b100100011, Decimal: 291

2.2 Convert the following numbers from hex to binary:

(a) 0xD3AD

0b1101001110101101

(a) 0x7EC4

0b0111111011000100

2.3 Assuming an 8-bit integer and a bias of −127 where applicable, what is the largest integer for
each of the following representations? What is the result of adding one to that number?

(a) Unsigned

Largest: 255, Largest + 1: 0

(a) Biased

Largest: 128, Largest + 1: -127

(a) Two’s Complement

Largest: 127, Largest + 1: -128

2.4 How would you represent the numbers 0, 1, and −1? Express your answer in binary and a bias
of −127 where applicable.

(a) Unsigned

0: 0b0000 0000, 1: 0b0000 0001, −1: N/A
(a) Biased

0: 0b0111 1111, 1: 0b1000 0000, −1: 0b0111 1110

(a) Two’s Complement

0: 0b0000 0000, 1: 0b0000 0001, −1: 0b1111 1111
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Number Representation 3

2.5 How would you represent the numbers 17 and −17? Express your answer in binary and a bias of
−127 where applicable.

(a) Unsigned

17: 0b0001 0001, −17: N/A

(a) Biased

17: 0b1001 0000, −17: 0b0110 1110

(a) Two’s Complement

17: 0b0001 0001, −17: 0b1110 1111

2.6 What is the largest integer that can be represented by any encoding scheme that only uses 8 bits?

There is no such integer. For example, an arbitrary 8-bit mapping could choose to represent the
numbers from 1 to 256 instead of 0 to 255.

2.7 Prove that that 𝑥 + 𝑥 + 1 = 0, where 𝑥 is obtained by inverting the bits of 𝑥 in binary.

Consider what happens when we perform 𝑥 + 𝑥. In each “place”, we either have that 𝑥 has a
0 bit in that place, meaning that 𝑥 has a 1 bit in that place, or vice versa. In either case, adding
0b1+ 0b0 = 0b1, meaning that regardless of the value of 𝑥, 𝑥 + 𝑥 = 0b111...111. Adding 1
to this then causes overflow, resulting in 0.

3 Arithmetic and Counting
3.1 Compute the decimal result of the following arithmetic expressions involving 6-bit Two’s

Complement numbers as they would be calculated on a computer. Do any of these result in an
overflow? Are all these operations possible?

(a) 0b011001 - 0b000111

0b010010 = 18, No overflow.

(b) 0b100011 + 0b111010

Adding together we get 0b1011101, however since we are working with 6-bit numbers we
truncate the first digit to get 0b011101 = 29. Since we added two negative numbers and
ended up with a positive number, this results in an overflow.

(c) 0x3B + 0x06

Converting to binary, we get 0b111011 + 0b000110 = (after truncating as the problem states
we’re working with 6-bit numbers) 0b000001 = 1. Despite the extra truncated bit, this is
not an overflow as −5 + 6 indeed equals 1!

(d) 0xFF - 0xAA
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4 Number Representation

Trick question! This is not possible, as these hex numbers would need 8 bits to represent
and we are working with 6 bit numbers.

(e) 0b000100 - 0b001000

The 2′s complement of 0b001000 is 0b110111 + 1 = 0b111000. We add that to 0b000100
to get 0b111100.

We can logically fact check this by converting everything to decimals: 0b000100 is 4 and
0b001000 is 8, so the subtraction should result in −4, which is 0b111100.

3.2 How many distinct numbers can the following schemes represent? How many distinct positive
numbers?

(a) 10-bit unsigned

1024, 1023. In unsigned representation, different bit-strings correspond to different numbers,
so 10 bits can represent 2{10} = 1024 distinct numbers. Out of all of these, only the number
0 is non-positive, so we can represent 1023 distinct positive numbers.

(b) 8-bit Two’s Complement

256, 127. Like unsigned, different bit-strings correspond to distinct numbers in Two’s
Complement, so 8 bits can represent 28 = 256 numbers. Out of these, half of them have a
MSB of 1, which are negative numbers, and one is the number zero, so we can represent
256
2 − 1 = 127 distinct positive numbers.

(c) 6-bit biased, with a bias of −30

64, 33. Also like unsigned, in biased notation, no two different bit-strings correspond to the
same number, so 6 bits can represent 26 = 64 numbers. With this bias, the largest number
we can represent is 0b111111= 63 − 30 = 33, and the smallest is −30, so there are 33 distinct
positive numbers (1 – 33).

(d) 10-bit sign-magnitude

1023, 511. Two different bit-strings (0b0000000000 and 0b1000000000) correspond to the
same number zero, so we can represent only 2{10} − 1 = 1023 distinct numbers. Out of
these, every bit-string with a MSB of 0, except 0b0000000000, correspond to a different
positive number, so we can represent 29 − 1 = 511 distinct positive numbers.
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