
CS61C RISC-V
Fall 2025 Discussion 4

1 RISC-V Instructions
1.1 Assume we have an array in memory that contains int *arr = {1,2,3,4,5,6,0}. Let register

s0 hold the address of the element at index 0 in arr. You may assume integers are four bytes
and our values are word-aligned. What do the following snippets of RISC-V code do? Assume
that all the instructions are run one after the other in the same context.

(a) lw t0, 12(s0)

Sets t0 equal to arr[3]

(b) sw t0 16(s0)

Stores t0 into arr[4]

(c) slli t1, t0, 2
add t2, s0, t1
lw t3, 0(t2)
addi t3, t3, 1
sw t3, 0(t2)

Increments arr[4] by 1.

1st line sets t1 = 16

2nd line adds it to s0 so that it now points at arr[4]

3rd-5th line loads the value at arr[4], increments by one, and stores it back

(d) lw t0, 0(s0)
xori t0, t0, 0xFFF
addi t0, t0, 1

Sets t0 to -1 * arr[0]

2 Lost in Translation
2.1 Translate the code verbatim between C and RISC-V. The comments above the code indicate which

registers to store the variables.

1

2 RISC-V

C RISC-V

// s0 -> a
// s1 -> b
// s2 -> c
// s3 -> z
int a = 4, b = 5, c = 6;
int z = a + b + c + 10;

addi s0, x0, 4
addi s1, x0, 5
addi s2, x0, 6
add s3, s0, s1
add s3, s3, s2
addi s3, s3, 10

// int *p = intArr;
// s0 -> p;
// s1 -> a;
*p = 0;
int a = 2;
p[1] = p[a] = a;

sw x0, 0(s0)
addi s1, x0, 2
sw s1, 4(s0)
slli t0, s1, 2
add t0, t0, s0
sw s1, 0(t0)

// s0 -> a,
// s1 -> b
int a = 5;
int b = 10;
if (a + a == b) {
 a = 0;
} else {
 b = a - 1;
}

start:
 addi s0, x0, 5
 addi s1, x0, 10
 add t0, s0, s0
 bne t0, s1, else
 add s0, x0, x0
 jal x0, exit
else:
 addi s1, s0, -1
exit:
 ...

// Compute s1 = 2^30
int s0 = 0;
int s1 = 1;
for (; s0 != 30; s0 += 1) {
 s1 *= 2;
}

start:
 addi s0, x0, 0
 addi s1, x0, 1
 addi t0, x0, 30
loop:
 beq s0, t0, exit
 slli s1, s1, 1
 addi s0, s0, 1
 jal x0, loop
exit:
 ...

2

RISC-V 3

C RISC-V

// s0 -> n
// s1 -> sum
for (int sum = 0; n > 0; n--) {
 sum += n;
}

start:
 addi s1, x0, 0
loop:
 beq s0, x0, exit
 add s1, s1, s0
 addi s0, s0, -1
 jal x0, loop
exit:
 ...

3 RISC-V Memory Access
For Q3.1 – Q3.2, use the instructions and memory to figure out what the code does. Recall that
RISC-V is little-endian and byte addressable. For any unknown instructions, use the CS 61C
reference card!

3.1 Fill in the registers with the values they contain after the code finishes executing.

li t0 0x00FF0000
lw t1 0(t0)
addi t0 t0 4
lh t2 2(t0)
lw s0 0(t1)
lb s1 3(t2)

t0 0x00FF0004

t1 36

t2 0x00FF0006

s0 0xDEADB33F

s1 0xFFFFFFC5

0xFFFFFFFF
...

0x00FF0004 0x000C561C
0x00FF0000 36

...
0x00000036 0xFDFDFDFD

...
0x00000024 0xDEADB33F

...
0x0000000C 0xC5161C00

...
0x00000000

• t0: Line 3 adds 4 to the initial address.
• t1: Line 2 loads the 4-byte word from address 0x00FF0000.
• t2: Line 4 loads two bytes starting at the address 0x00FF0004 + 2 = 0x00FF0006. This

returns 0x000C
• s0: Line 5 loads the word starting at address 36 = 0x24 which is 0xDEADB33F.
• s1: Line 6 loads the MSB starting of the 4-byte word at address 0xC. The value is 0xC5 which

is sign-extended to 0xFFFFFFC5.

3

https://cs61c.org/fa25/pdfs/resources/reference-card.pdf
https://cs61c.org/fa25/pdfs/resources/reference-card.pdf

4 RISC-V

3.2 Fill in the memory diagram and t3 register with the values contained in them after the code
finishes executing. The values in the t0, t1, and t2 registers at the start of program execution
have been provided to you. Assume that all memory starts out initialized to zeros.

sw t0 0(t1)
addi t0 t0 4
sh t1 2(t0)
sh t2 0(t0)
lw t3 0(t1)
sb t1 1(t3)
sb t2 3(t3)

t0 0xABADCAF8

t1 0xF0120504

t2 0xBEEFDAB0

t3 0xABADCAF8

0xFFFFFFFF 0x00000000
...

0xF0120504 0xABADCAF8
...

0xBEEFDAB0 0x00000000
...

0xABADCAFC 0x0504DAB0
0xABADCAF8 0xB0000400

...
0x00000000 0x00000000

4

	RISC-V Instructions
	Lost in Translation
	RISC-V Memory Access

