
CS61C Single-Cycle Datapath
Fall 2025 Discussion 8

1 FSM
A finite state machine is a type of simple automaton where the next state and output depend only
on the current state and input. Each state is represented by a circle, and every proper finite state
machine has a starting state, signified either with the label “Start” or a single arrow leading into
it. Each transition between states is labeled [input]/[output].

For example, below is a finite state machine with two states (0 and 1). It outputs 1 when the state
changes, and 0 when the state stays the same.

The machine starts in state 0. When the input is 0, it stays in its current state and outputs 0. When
the input is 1, it switches to the other state and outputs 1.

When in state 1, the machine behaves the same way: it stays in state 1 and outputs 0 when the
input is 0, and switches back to state 0 with an output of 1 when the input is 1.

Start

0/0

0/0

1/1 1/1Start

0

1

With combinational logic and registers, any FSM can be implemented in hardware!

1



2 Single-Cycle Datapath

2 Pre-Check: T/F?
2.1 Register “clk-to-q” delay is the time between the rising edge of the clock signal and the register’s

hold time.

2.2 State elements only update their output on the rising edge of the clock, even if the inputs change
between clock rising edges.

2.3 The single cycle datapath uses the outputs of all hardware units for each instruction.

2.4 It is possible to execute the stages of the single cycle datapath in parallel to speed up execution
of a single instruction.

2.5 If the logic delay of reading from IMEM is reduced, then any (non-empty) program using the
single cycle datapath will speed up.

2.6 Stores and loads are the only instructions that require input/output from DMEM.

2.7 It is possible to feed both the immediate generator’s output and the value in rs2 to the ALU in a
single instruction.

2



Single-Cycle Datapath 3

3 SDS
There are two basic types of circuits: combinational logic circuits and state elements.

Combinational logic circuits simply change based on their inputs after whatever propagation
delay is associated with them. For example, if an AND gate (pictured below) has an associated
propagation delay of 2ps, its output will change based on its input as follows:

You should notice that the output of this AND gate always changes 2ps after its inputs change.

State elements, on the other hand, can remember their inputs even after the inputs change. State
elements change value based on a clock signal. A rising edge-triggered register, for example,
samples its input at the rising edge of the clock (when the clock signal goes from 0 to 1).

Like logic gates, registers also have a delay associated with them before their output will reflect
the input that was sampled. This is called the clk-to-q delay. (“Q" often indicates output). This is
the time between the rising edge of the clock signal and the time the register’s output reflects the
input change.

The input to the register samples has to be stable for a certain
amount of time around the rising edge of the clock for the input
to be sampled accurately. The amount of time before the rising
edge the input must be stable is called the setup time, and the
time after the rising edge the input must be stable is called the
hold time. Hold time is generally included in clk-to-q delay, so
clk-to-q time will usually be greater than or equal to hold time.

Logically, the fact that clk-to-q ≥ hold time makes sense since it only takes clk-to-q seconds to
copy the value over, so there’s no need to have the value fed into the register for any longer.

Examine the register circuit and assume setup time of 2.5ps, hold time of 1.5ps, and a clk-to-q
time of 1.5ps. The clock signal has a period of 13ps.

Notice that the value of the output in the diagram doesn’t change immediately after the rising
edge of the clock. Until enough time has passed for the output to reflect the input, the value held
by the output is garbage; this is represented by the shaded gray part of the output graph. Clock

3



4 Single-Cycle Datapath

cycle time must be small enough that inputs to registers don’t change within the hold time and
large enough to account for clk-to-q times, setup times, and combinational logic delays.

A few important SDS relationships are below:

𝜏critical path delay = 𝜏clk-to-q + 𝜏combinational logic delay + 𝜏setup time

where 𝜏combinational logic delay is the maximum combinational logic delay for any register → register
path in the circuit. The path with the maximum delay is called the “critical path”.

Additionally, circuits must satisfy hold-time constraints because hold times may be violated if
data propagates too quickly (see above):

𝜏clk-to-q + 𝜏smallest combinational delay ≥ 𝜏hold time

4



Single-Cycle Datapath 5

4 Single-Cycle Datapath
Our single-cycle datapath is a synchronous digital system (SDS) that has the capabilities of
executing RISC-V instructions. It is divided into multiple stages of execution, where each stage is
responsible for a completing a certain task.

IF Instruction Fetch:

• Send address to the instruction memory (IMEM), and read IMEM at that address.

• Hardware units: PC register, +4 adder, PCSel mux, IMEM

ID Instruction Decode:

• Generate control signals from the instruction bits, generate the immediate, and read registers
from the RegFile.

• Hardware units: RegFile, ImmGen

EX Execute:

• Perform ALU operations, and do branch comparison.

• Hardware units: ASel mux, BSel mux, branch comparator, ALU

MEM Memory

• Read from or write to the data memory (DMEM).

• Hardware units: DMEM

WB Writeback

• Write back either PC + 4, the result of the ALU operation, or data from memory to the
RegFile.

• Hardware units: WBSel mux, RegFile

5



6 Single-Cycle Datapath

6


	FSM
	Pre-Check: T/F?
	SDS
	Single-Cycle Datapath

