C561C
Fall 2025

RISC-V Pipelining, Hazards

Discussion 9

1 Performance Analysis

Register clk-to-q 30 ps Branch comp. 75 ps DMEM write setup 200 ps

Register setup 20 ps ALU 200 ps Memory read 250 ps

Register hold 10 ps Imm. Gen. 15 ps Mux 25 ps

RegFile read 100 ps RegFile setup 20 ps

Copied above are the same sample delays and setup times for each of the datapath components

and registers. In the questions below, use these in conjunction with the pipelined datapath on the

last page to answer them.

What would be the fastest possible clock time for a single cycle datapath? Recall from the
previous question that load instructions exercises the critical path.

HINT: ¢

clk-cycle

>t

clk-to-q + tlongest—combinational—path + tsetup

Similar to the previous question,

tclk > tPC clk-to-q + tIMEM read + tRF read + 7':mux + tALU + 7':DMEM read + tmux + tRF setup
> 30 + 250 + 100 + 25 4 200 4 250 4 25 + 20
> 900 ps

Note that we take the maximum of the path from IMEM->Regfile->Mux->ALU and IMEM-
>ImmGen->Mux->ALU. With this hardware configuration, the longest path is through the
Register file + ASel Mux.

What is the fastest possible clock time for a pipelined datapath?

HINT: First identify the critical path delay (longest path between two registers) for each stage

IF :

ID

tPC clk-to-q + tIMEM read + tReg‘ setup — 30 + 250 + 20 = 300 ps

: TReg clk-to-q T URF read T TReg setup = 30 + 100 + 20 = 150 ps

EX:
MEM :
: TReg clk-to-q T bmux T IRF setup = 30 + 25 + 20 = 75 ps

tReg clk-to-q + tmux + tALU + tReg setup — 30 425 4200 + 20 = 275 ps
tReg clk-to-q + tDMEM read + tReg setup — 30 + 250 + 20 = 300 bs

t > max(IF, ID, EX, MEM, WB) = 300 ps

Note that for the ID and EX stages, the immediate generator and branch comparator delays are
overshadowed by the longer delays of RegFile read and ALU respectively.

2 RISC-V Pipelining, Hazards

At steady state (i.e. ignore the first few cycles), how many instructions finish every cycle in the
single-cycle datapath? What about the pipelined datapath assuming no hazards occur?

In a single-cycle datapath, 1 instruction completes every cycle. For a pipelined datapath at steady
state, 1 instruction finishes the WB stage and completes every cycle too. Hence, both datapaths
have cycles per instruction (CPI) of approximately 1.

Note that in a real-world pipelined datapath, CPI is often greater than 1 due to stalls from data,

and control hazards—though techniques like forwarding and branch prediction can mitigate
this.

What is the fastest possible clock frequency of the single-cycle datapath compared to that of

the pipelined datapath? Based on this, how do their instruction throughputs differ assuming no
hazards occur?

1

Clock frequency = & o

Clock frequency

Th hput =
rougnpu Cycles per instruction (CPI)

Note that the CPI for both is ~1. For the single-cycle datapath,

Clock frequency = ~ 1.11 GHz

1
900 ps
Throughput ~ 1.11 billion instructions per second

For the pipelined datapath,

Clock frequency = ~ 3.33 GHz

300 ps
Throughput ~ 3.33 billion instructions per second

Notice that by introducing pipelining and reducing the critical path delay, we increase the
throughput, allowing more instructions to complete each second! In reality, throughput for the
pipelined datapath will often be less than that due to hazards.

What is the speedup from the single cycle datapath to the pipelined datapath? Why is the speedup
less than 5x?

RISC-V Pipelining, Hazards 3

Pipelined throughput 3.33 GHz
= = JoX

Speedup = = =
pbeedtp Single-cycle throughput 1.11 GHz

Alternatively,

Single-cycle clock time 900 ps 5
f— f— X
Pipelined clock time 300 ps

Speedup =

The speedup is less than 5 because:
1) the necessity of adding pipeline registers, which have clk-to-q and setup times
2) the need to set the clock to the maximum of the five stages.

Note: Hazards require additional logic to resolve which would result in an even smaller perfor-
mance increase.

2 Solving Data Hazards

One of the costs of pipelining is that it introduces pipeline hazards. Hazards, generally, are issues
with something in the CPU’s instruction pipeline that could cause the next instruction to execute
incorrectly. Recall that data hazards are caused by data dependencies between instructions. In
CS 61C, where we always assume that instructions go through the processor in order, we see data
hazards when an instruction reads a register before a previous instruction has finished writing to
that register.

For all questions, assume no branch prediction or double-pumping (i.e. write-then-read in
one cycle for RegFile).

Forwarding
Most data hazards can be resolved by forwarding, which is when the result of the EX or MEM
stage is sent to the EX stage for a following instruction to use.

Side note: There are two ways of forwarding - MEM to EX and WB to EX. How are each of these
implemented in hardware? We add 2 wires: one from the beginning of the MEM stage for the
output of the ALU (right after the EX/MEM pipelined register) and one from the beginning of the
WB stage (right after the MEM/WB pipelined register). Both of these wires will connect to the A/
B muxes in the EX stage.

Look for data hazards in the code below, and figure out how forwarding could be used to solve
them.

Instruction C1 C2 C3 C4 C5 Cé6 C7

1. addi tO, a0, -1 IF D EX MEM | WB

2. and s2, tO0, a0 IF 1D EX MEM | WB

3. sltiu a0, t0, 5 IF D EX MEM | WB

4 RISC-V Pipelining, Hazards

There are two data hazards, between instructions 1 and 2, and between instructions 1 and 3.
The first could be resolved by forwarding the ALU output in the MEM stage to the beginning of
the EX stage in C4, and the second could be resolved by forwarding the ALU output in the WB
stage in C5 to the beginning of the EX stage in C5.

Imagine you are a hardware designer working on a CPU’s forwarding control logic. How many

instructions after the addi instruction could be affected by data hazards created by this addi
instruction?

Three instructions. For example, with the addi instruction, any instruction that uses t0 that has
its ID stage in C3, C4, or C5 will not have the result of addi’s writeback in C5. If, however, we
are allowed to assume double-pumping (write-then-read to registers), then it would only affect

two instructions since the ID stage of instruction 4 would be allowed to line up with the WB
stage of instruction 1.

Stalls

Identify the data hazards in the code below. One of them cannot be solved with forwarding—
why? What can we do to solve this hazard?

Instruction C1 C2 C3 C4 C5 Cé6 C7 Cs8

1. addi sO, sO, 1 IF ID EX MEM | WB

2. addi tO, tO, 4 IF ID EX MEM | WB
3. 1w t1, 0(t0) IF ID EX MEM | WB
4. add t2, t1, x0 IF ID EX MEM | WB

There are two data hazards in the code. The first hazard is between instructions 2 and 3, from
t0, and the second is between instructions 3 and 4, from t1. The hazard between instructions 2
and 3 can be resolved with forwarding, but the hazard between instructions 3 and 4 cannot be
resolved with only forwarding. This is because even with forwarding, instruction 4 needs the
result of instruction 3 at the beginning of C6, and it won’t be ready until the end of Cé.

In addition to forwarding, we can fix this by stalling: insert a nop (no-operation) between
instructions 3 and 4.

Say you are the compiler and can re-order instructions to minimize data hazards while guaran-
teeing the same output. How can you fix the code above?

Reorder the instructions 2-3-1-4, because instruction 1 has no dependencies.

RISC-V Pipelining, Hazards 5

Control Hazards

Control hazards are caused by jump and branch instructions, because for all jumps and some
branches, the next PC is not PC + 4, but the result of the ALU available after the EX stage. We
could stall the pipeline for control hazards, but this decreases performance.

Identify the control hazards in the code below. How can we resolve them?

Instruction C1 C2 C3 C4 C5 Coé C7 C8 C9

1. beq sO, s1, loop IF ID EX MEM | WB

2. addi t0, t0, 4 IF ID |EX |MEM |WB
3. ori t1, t1, 7 IF ID |EX |MEM |WB

4. slli sp, sp, 2 IF ID |EX |MEM |WB

5. addi a0, t0 2 IF ID |EX |MEM |WB

There are three control hazards in the code. The first hazard is between instructions 1 and 2
because addi tO, tO, 4 may not get executed if the branch condition is true. The second
hazard is between instructions 1 and 3 for the same reason as above and similarly between
instructions 1 and 4. The branch condition and ALU outputs are available at the start of the MEM
stage (look at the pipeline register placement!) in C4, so we have to stall for 3 cycles. There is
no control hazard between instructions 1 and 5 because there is no need to stall instruction 5 if

the branch is not taken.

We can fix the hazards by stalling: insert three NOPs (no-operation) after the first instruction.

Besides stalling, what can we do to resolve control hazards?

We can try to predict which way branches will go, and if this prediction is incorrect, flush the
pipeline and continue with the correct instruction. No branch prediction will always incur 3

stalls, while branch prediction can save 3 stalls on a correct prediction.

3 Hazards Practice

Given the RISC-V code below and a 5-stage pipelined CPU with no forwarding, how many
hazards would there be? What types are each hazard? Consider all possible hazards between all

instructions.
How many stalls would there need to be in order to fix the data hazard(s) if the RegFile supports

double-pumping (i.e. write-then-read)? What about the control hazard(s) if we use branch predic-
tion with perfect accuracy? There is no forwarding in this question.

6 RISC-V Pipelining, Hazards

Instruction C1 C2 C3 C4 C5 Cé C7 C8 C9
1.sub t1, sO, si IF ID EX MEM | WB

2.or s0, t0, t1 IF ID EX MEM | WB

3.sw s1, 100(s0) IF ID EX MEM | WB

4. bgeu s0, s2, loop IF D EX MEM | WB

5.add t2, x0, x0 IF ID EX MEM | WB

RISC-V Pipelining, Hazards 7

There are four hazards: between instructions 1 and 2 (data hazard from t1), instructions 2 and 3
(data hazard from s0), instructions 2 and 4 (from s0), and instructions 4 and 5 (a control hazard).

Assuming double pumping (we can read and write to the RegFile on the same cycle), two stalls
are needed between instructions 1 and 2, and two stalls are needed between instructions 2 and
3. For the control hazard, if we predicted correctly, then no stalls are needed, but if we predicted
incorrectly, then we need 3 stalls to flush the pipeline. We don’t need to stall for the hazard
between 2 and 4 because stalling for instruction 3 already handles that.

Instruction C1 C2 C3 C4 C5 Cé C7 Cs8 C9
1. sub t1, sO, si IF ID EX MEM | WB
nop IF X X X X
nop IF X X X X
2. or s0, tO, ti1 IF ID EX MEM | WB
nop IF X X X X
nop IF X X X
3. sw s1, 100(s0) IF ID EX
4. bgeu s0, s2, loop IF ID
nop IF
Instruction ... | C10 C11 Ci12 C13 Ci14 C15 C16 C17
nop | X
3. sw s1, 100(s0) ...| MEM | WB

4. bgeu s0, s2, loop|...| EX MEM | WB

nop | X X X X
nop .. | IF X X X X
nop IF X X X X
5. add t2, x0, x0 IF ID EX MEM | WB

8 RISC-V Pipelining, Hazards

Single-Cycle Datapath Diagram

wdata
ALU
PC+4
Peed |0
PCH PC
ALU »1 B
| RegFile ~ \
A
wdata 1 DMEM
IMEM A
rdatal >0
inst LR/ L Branch T_ addr AU g
addr — Comp >ALU bers
inst[19:15] y > 2
rs1 ~ Mem
rdata2| 0 rdata 0
inst[24:20] s2 »B
o > 1 P
RegWEn A T L1
Y »\wdata
inst[31:7] Imm
Gen MemRW A
A A
A Y
[pcsel | [inst[31:0]] JRegWEn] ImmSel | [Brun [BrEq [BriT] BSel | Asel] ALUSel] [MemRwW] [wBsel]
5-Stage Datapath Diagram
inst
wdata
ALU
PC+4
>0) M M 1l
PC +4
AL g | - S
B PC RegFile |Pc ~
A
»wdat 1
IMEM ata DMEM
rdata’l 0
inst[11:7] d RegRead Branch addr
[Datal
addr —> Comp
. inst[19:15] A
|nst-D et sl ~
inst rdata2 0 rdata
inst[24:20] >ls2 RegRead
Data2 > 1/
RegWEN AN]
wdata
Imm
RegRead
inst[31:7) Gs‘n iam Data2 Men‘1RW /A
[[$
A A A 3
inst inst inst
A A
inst (WB) [RegWEn | [inst (D)[immsel] [linst (EX) [Brun[Breq[BrLt] BSel [ASel JALUSEl] [Memrw [inst m)] PCSel] ~ [wBSel]
|

	Performance Analysis
	Solving Data Hazards
	Forwarding
	Stalls
	Control Hazards

	Hazards Practice

