
CS61C Caches
Fall 2025 Discussion 10

1 Memory Quantities
1.1 Convert the following quantities into the number of bytes each term represents (you may leave

your answers in terms of powers of 2).

a) 1 KiB

Answer: 210 Bytes

We can use the 61C reference card (or
the precheck worksheet) for the values
of the SI prefixes. A Kibi- is 210, so 1 KiB
= 210 bytes.

b) 32 MiB

Answer: 225 Bytes

We know that one MiB = 220 Bytes,
so we have 32 × 220 = 25 × 220 = 225

bytes.

c) 16 Gib

Answer: 231 Bytes

16 Gib = 24 × 230 = 234. Notice that we
have 16 Gib which is 16 Gibibits – one
byte is 8 = 23 bits, so 234 / 23 = 231

Bytes

d) 20 KiB

Answer: 5 × 212 Bytes

We can factor 20 into 4 × 5 for a solu-
tion in terms of powers of 2. 20 KiB =
(4 × 5) × 210 = (22 × 5) × 210 = 5 ×
212 Bytes.

1.2 Rewrite the following quantities using IEC Prefixes.

a) 2048 B

Answer: 2 KiB

2048 = 211 = 210+1

= 21 × 210 = 2 KiB.

b) 238 B

Answer: 256 GiB

238 can be rewritten as 230+8 =
28 × 230 = 256 × 230 = 256
GiB.

2 Cache T/I/O
2.1 Assume we have a 32-bit address space with a 32B, direct-mapped cache with 8B blocks. Of the

32 bits in each address, which bits do we use to find the tag, index, and offset of the cache?

1

2 Caches

Tag: 27 bits → address[31:5]
Index: 2 bits → address[4:3]
Offset: 3 bits → address[2:0]
We can start by finding which bits correspond to the offset bits. The number of offset bits is
just dependent on the block size, so since our blocks are size 8B, we need log2(8) = 3 bits to
differentiate the 8 bytes in the block, so we have 3 offset bits. In this case, the offset is the 3
least significant bits. Denoting the most significant bit (MSB, on the left) as it 31 and the least
significant bit (LSB, on the right) as bit 0, our offset bits are bits 0, 1, and 2.

We can determine the number of index bits we need from the number of sets our cache has.
Since our cache is direct-mapped, the number of sets is the same as the number of cache blocks,
so we just need to figure out how many blocks our cache has. We see that num blocks = cache
size/block size, so our cache has 32/8 = 4 blocks. We need log2(4) = 2 bits to differentiate the 4
blocks, so we have 2 index bits.

From our T:I:O breakdown, we can see that the offset bits are the least significant bits and the
next set of least significant bits is the index bits. We calculated that there were 3 offset bits, so
our index bits will start at bit 3 (remember the least significant bit is bit 0!). Since we have 2
index bits, this means that we can find the index bits at bits 3 and 4.

From our T:I:O breakdown, we can see that the tag bits are the most significant bits. Our tag is
the remainder most-significant bits, so we can find our tag bits at bits 5-31.

2.2 Assume that we have the same cache scheme as the previous part (a 32-bit address space with a
32B, direct-mapped cache with 8B blocks). Do the following:
• Decode the tag, index, and offset bits for each address
• Classify each of the following accesses as a cache hit (H) or a cache miss (M).

‣ For any misses, list out what type of miss it is (Compulsory (C), Noncompulsory (NC)).

Tip: Use the space below to draw out your cache!

Address T/I/O Hit / Miss (C / NC)

0x00000004 Tag 0, Index 0, Offset 4 Miss (Compulsory)

0x00000005 Tag 0, Index 0, Offset 5 Hit

0x00000068 Tag 3, Index 1, Offset 0 Miss (Compulsory)

0x000000C8 Tag 6, Index 1, Offset 0 Miss (Compulsory)

0x00000068 Tag 3, Index 1, Offset 0 Miss (Noncompulsory)

0x000000DD Tag 6, Index 3, Offset 5 Miss (Compulsory)

0x00000045 Tag 2, Index 0, Offset 5 Miss (Compulsory)

0x000000CF Tag 6, Index 1, Offset 7 Miss (Noncompulsory)

0x000000F3 Tag 7, Index 2, Offset 3 Miss (Compulsory)

2

Caches 3

3 Cache Associativity
3.1 Here’s some practice involving a 2-way set associative cache. Assume we have an 8-bit address

space with a 32B, 2-way set associative cache with 8B blocks.
• Decode the tag, index, and offset bits for each address
• Classify each of the following accesses as a cache hit (H) or a cache miss (M).

‣ For any misses, list out what type of miss it is (Compulsory (C), Noncompulsory (NC)).

Assume that we have an LRU replacement policy (in general, this is not always the case).

Address T/I/O Hit / Miss (C / NC)

0b0000 0100 Tag 0000, Index 0, Offset 100 Miss (Compulsory)

0b0000 0101 Tag 0000, Index 0, Offset 101 Hit

0b0110 1000 Tag 0110, Index 1, Offset 000 Miss (Compulsory)

0b1100 1000 Tag 1100, Index 1, Offset 000 Miss (Compulsory)

0b0110 1000 Tag 0110, Index 1, Offset 000 Hit

0b1101 1101 Tag 1101, Index 1, Offset 101 Miss (Compulsory)

0b0100 0101 Tag 0100, Index 0, Offset 101 Miss (Compulsory)

0b0000 0100 Tag 0000, Index 0, Offset 100 Hit

0b0011 0000 Tag 0011, Index 0, Offset 000 Miss (Compulsory)

0b1100 1011 Tag 1100, Index 1, Offset 011 Miss (Noncompul-
sory)

0b0100 0010 Tag 0100, Index 0, Offset 010 Miss (Noncompul-
sory)

Since our cache is 2-way set associative, there are 2 blocks in a set. Given the cache size and
the block size, we have 32 / 8 = 4 blocks. Thus, there are 4 / 2 = 2 sets in our cache. We need
log2(2) = 1 bit to differentiate the 2 sets, so we have 1 index bit. Our block size of 8 B means
we have log2(8) = 3 offset bits, and that the rest of our bits are our tag bits. Therefore, our TIO
breakdown means bits 0, 1, and 2 are our offset bits, the only index bit is bit 3, and bits 4-7 being
the tag bits.

3.2 What is the hit rate of our above accesses?

3 hits
 11 accesses ≈ 27.3% hit rate

4 Code Analysis
Given the follow chunk of code, analyze the hit rate given that we have a byte-addressed computer
with a total memory of 1 MiB. It also features a 16 KiB Direct-Mapped cache with 1 KiB blocks.
Assume that your cache begins cold.

3

4 Caches

 #define NUM_INTS 8192 // 2^13
 int A[NUM_INTS]; // A lives at 0x10000
 int i, total = 0;
 for (i = 0; i < NUM_INTS; i += 128) {
 A[i] = i; // Line 1
 }
 for (i = 0; i < NUM_INTS; i += 128) {
 total += A[i]; // Line 2
 }

4.1 How many bits make up a memory address on this computer?

We take log2(1 MiB) = log2(220) = 20.

4.2 What is the T/I/O breakdown?

Offset = log2(1 KiB) = log2(210) = 10
Index = log2(16 KiB

1 KiB) = log2(16) = 4
Tag = 20 − 4 − 10 = 6

4.3 Calculate the cache hit rate for the line marked Line 1:

The integer accesses are 4*128 = 512 bytes apart, which means there are 2 accesses per line.
The first accesses in each line is a compulsory cache miss, but the second is a hit because A[i]
and A[i+128] are in the same cache block. Thus, we end up with a hit rate of 50%.

4.4 Calculate the cache hit rate for the line marked Line 2 (Note that the cache still retains contents
from earlier lines):

The size of A is 8192*4 = 215 bytes. This is exactly twice the size of our cache. At the end of
Line 1, we have the second half of A inside our cache, but Line 2 starts with the first half of A.
Thus, we cannot reuse any of the cache data brought in from Line 1 and must start from the
beginning. Thus our hit rate is the same as Line 1 since we access memory in the same exact
way as Line 1. We don’t have to consider cache hits for the variable total, as the compiler will
most likely store it in a register. Thus, we end up with a hit rate of 50%.

5 Cache Performance
Recall that AMAT stands for Average Memory Access Time. The main formula for it is:

AMAT = Hit Time + Miss Rate ∗ Miss Penalty

5.1 Assume clock speed is 1GHz. Suppose your system takes 100 cycles to access main memory. We
decide to add a cache with a measured hit time of 25 cycles and miss rate of 25%. What is the
average memory access time of the system in nanoseconds?

4

Caches 5

Answer: 50ns

At a clock speed of 1GHz (109 cycles per second), 1 cycle = 1 ns. Therefore, 25 cycles = 25 ns
and 100 cycles = 100 ns.

We are looking for a solution to the AMAT equation. The hit time for the new L1$ is 25ns. The
miss rate is 25% and the miss penalty will be the 100ns required to access main memory in the
case of a cache miss. Thus, our solution is AMAT = 25ns + 0.25 ∗ 100ns = 50ns. By adding a
cache, we have effectively halved the time spent waiting for memory accesses.

5.2 In a new 2-level cache system, after 100 total accesses to the cache system, we find that the L2$
(L2 Cache) ended up missing 20 times. What is the global miss rate of L2$?

Answer: 20%

Global Miss Rate = Local Missed Accesses
Total System Accesses = 20

100 = 20%

5.3 Given the system from the previous subpart (100 total accesses, 20 L2$ misses), if L1$ had a local
miss rate of 50%, what is the local miss rate of L2$?

Answer: 40%

Local Miss Rate = Local Missed Accesses
Local Cache Accesses = 20

50%∗100 = 20
50 = 40%

We know that L2$ is accessed when L1$ misses, so if L1$ misses 50% of the time, that means we
access L2$ 50 times, of which we ended up having 20 misses in L2$.

For the following subparts, suppose we have a new system that consists of:
1. An L1$ that has a hit time of 2 cycles and a local miss rate of 20%
2. An L2$ that has a hit time of 15 cycles and has a global miss rate of 5%
3. Main memory where accesses take 100 cycles

5.4 What is the local miss rate of L2$?

Answer: 25%

The number of accesses to the L2$ is the number of misses in L1$, so we divide the global miss
rate of L2$ with the miss rate of L1$.

L2$ Local Miss Rate = Misses in L2$
Accesses in L2 = Misses in L2$

Total Accesses/
Misses in L1$
Total Accesses = Global Miss Rate

L1$ Miss Rate = 5%
20% =

0.25 = 25%

5.5 What is the AMAT of the system in cycles?

Answer: AMAT = 2 + 20% × (15 + 25% × 100) = 10 cycles

The miss penalty of the L1$ is the “local” AMAT of the L2$.

5.6 Suppose we want to reduce the AMAT of the system to 8 cycles or lower by adding in a L3$. If
the L3$ has a local miss rate of 30%, what is the largest hit time that L3$ can have?

5

6 Caches

Answer: 30 cycles

Let 𝐻 = hit time of the cache. Extending the AMAT equation so that the Miss Penalty of the
L2$ is the “local” AMAT of the L3$, we can write:

AMAT = 2 + 20% ∗ (15 + 25% ∗ (𝐻 + 30% ∗ 100)) ≤ 8

Solving for 𝐻 , we find that 𝐻 ≤ 30. So, the largest hit time is 30 cycles.

6

	Memory Quantities
	Cache T/I/O
	Cache Associativity
	Code Analysis
	Cache Performance

