CS 61C Garcia
Fall 2025 Final

Solutions last updated: Monday, December 29, 2025

PriNT Your Name:

PrINT Your Student ID:

PRINT the Name and Student ID of the person to your left:

PRINT the Name and Student ID of the person to your right:

PrINT the Name and Student ID of the person in front of you:

PrINT the Name and Student ID of the person behind you:

You have 170 minutes. There are 11 questions of varying credit. (100 points total)

Question: | 1 2 3 4 5 6 7 8 9 10 [11 | Total
Points: 11117 5 |15 (17 10| 5 7 5 8 0 100

For questions with circular bubbles, you may For questions with square checkboxes, you may
select only one choice. select one or more choices.

QO Unselected option (Completely unfilled) B You can select

@ Don’t do this (it will be graded as incorrect) B multiple squares

@ Only one selected option (completely filled) [V (Don’t do this)

Anything you write outside the answer boxes or you eress-eut will not be graded. If you write multiple
answers, your answer is ambiguous, or the bubble/checkbox is not entirely filled in, we will grade the
worst interpretation. For coding questions with blanks, you may write at most one statement per blank
and you may not use more blanks than provided.

If an answer requires hex input, you must only use capitalized letters (OxBOBACAFE instead of
OxbObacafe). For hex and binary, please include prefixes in your answers unless otherwise specified,
and do not truncate any leading 0’s. For all other bases, do not add any prefixes or suffixes.

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others. I will
follow the rules of this exam.

Acknowledge that you have read and agree to the honor code above and sign your name below:

Page 1 of 23

This content is protected and may not be shared, uploaded, or distributed.

Clarifications made during the exam:
Q2.6 - 2.14: You may also use x0 and ra in your solution.

Q5: The blurb above Q5.3 should read “For Q5.3-5.6, assume that ..., and the blurb above Q5.7 should read
“For Q5.7, assume the ..

Q4.4: 2 is not an answer to any of the WBSel options

Final Page 2 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

=SSP .
Q1 :-Iaidilao Hot Potpourri (11 points)

Q1.1 (1 point) Suppose we declare int8_t x = 0x9C; What is the decimal representation of x?

-100

Q1.2 (1 point) Suppose we execute the following C code on a 64-bit little-endian system.

1| // arr is located at address 0x10000000
int64_t arr[3] = {0x01020304, 0x10203040, OxDEOOABBA};
3 | printf ("%d", strlen((char*) &arr[1])));

What would the printf statement output?

4

Q1.3 (2 points) Assume we are using the standard IEEE-754 Single Precision Floating Point Convention.
What is the smallest positive multiple of 2048 (2 Ki) that we cannot represent? Express your answer
in sums or differences of powers of 2.

Q1.4 (1 point) Which stage of CALL enables separate compilation of files in a multi-file program?
O Compiler O Assembler @ Linker O Loader O None of the above

Q1.5 (1 point) Which stage of CALL directly replaces C code with machine code?
QO Compiler QO Assembler O Linker O Loader @ None of the above

Q1.6 (1 point) Convert the following RISC-V hexadecimal machine code into its corresponding RISC-V
instruction. Express immediates in decimal and use the corresponding register names instead of
numbers (i.e. s5 instead of x21).

0x043C8713 w—)- addi a4 s9 67

Final (Question 1 continues...) Page 3 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

© 00 N O O WN -

[I e S N e T =l e
= O W 00 NO O W N - O

(Question 1 continued...)

Takes a0 al a2 as arguments, returns one value in a0
stranger:

Q1.7 Prologue

srli sO s1 2

slli a2 a2 2

addi s2 t0 4

Q1.8 Save
jal ra things
Q1.8 Load

add a0 a0 a1l

Q1.7 Epilogue
jr ra

Takes a0 and al as arguments, returns two values in a0 and al
things:

add a0 a0 al

sub al a0 al

jr ra

For Q1.7 — Q1.8, select the minimum number of registers which need to be saved and restored to satisfy
calling convention.

Q1.7 (1 point) Select all registers we need to save/restore from the stack at the locations marked Q1.7.
[Ja0 Ws0 [Jat [st [J22 Ws2 [Jto [Jtt QO None of the above
Q1.8 (1 point) Select all registers we need to save/restore from the stack at the locations marked Q1.8.

[Jao [Js0 [Jat [Jst [Ja2 [1s2 [Jt0 []ti1 @ None oftheabove

Q1.9 (2 points) Anto has a program where 1/4 of it is sequential (i.e., not parallelizable), which is executed
on 3 cores. What is the max speedup this program can achieve? For full credit, express your answer
in its most simplified form.

2% speedup

Final Page 4 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Sd s (17 points)

Alex would like to implement a new RISC-V instruction, 1ai rd rs1 imm, with the following function-
ality.

R[rd]l = Mem[R[rs1]][31:0]
Rlrs1] = R[rsi] + imm

(2 points) This instruction can be implemented using two consecutive, existing RISC-V instructions. Write
the instructions and the arguments required to match the functionality of lai. Write your answer in
terms of 1lai parameters: rd, rsi, and imm.

lw rd 0(rsl) # Instruction 1
Q2.1

addi rsl rsl imm # Instruction 2
Q2.2

Q2.3 Oh no! Alex’s dog has eaten their immediate generator design. They tried to recall the design from
memory but they need some help remembering some details for their Logisim implementation.

inst >

Q2.3.1 (1 point) Considering that 1ai is best represented by an I-type format, what range of
bits should be selected by the bottom branch of the splitter? Express your answer in the
form MSB:LSB (inclusive).

31 ° 120

Q2.3.2 (1 point) What “Extension Type” should the bit extender use?

O Zero QO One @ Sign O Input O None of the above

Final (Question 2 continues...) Page 5 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 2 continued...)

Q2.4 (3 points) Now that the immediate generator is fixed, Alex can implement the 1ai instruction from
earlier. What additional changes are required to our single-cycle datapath to implement this, with
as few changes as possible? Select all that apply.

[] Add a new read input to the RegFile

[] Add a new read output to the RegFile

B Add a new write data & index input to the RegFile and update the corresponding control logic
[] Add a third possible value for ASel and update the corresponding MUX/control logic
[] Add a third possible value for BSel and update the corresponding MUX/control logic
[] Add a third possible value for PCSel and update the corresponding MUX/control logic
B Add a MUX in front of DMEM’s addr input and a new control line to control it

[] Add a MUX in front of DMEM’s wdata input and add a new control line to control it
[] Add a fourth possible value for WBSel and update the corresponding MUX/control logic
I Widen RegWEn to 2 bits

QO None of the above

Q2.5 While we were fixing our pipeline, Alex’s dog bit another circuit component! Enoch proposes the
following to replace the missing component. Assume each input and output label is connected to a
register.

in1
+ = out1 ton = 6 s
00000000 — t ;
nor — © PS
31-1
; tspriTTER = 7 PS

tapper = 9 DS
in2 + tork-to-g = 2 ps
tyorp = 1 PS

tserup = 3 PS

Q2.5.3 (2 points) Express out1 in terms of in1, in2 and arithmetic (not bitwise) operators.

outl = inl - in2

Solution: This circuit is a subtractor! Much of the logic is ‘flipping and adding 1’ in2
to negate it, before then adding that value to in1.

Notice that by ORing in1 with ~in1, the result is always OxFFFFFFFF. Using splitters
and a constant, we then create a constant 0x00000001 signal. This is added to ~in2
to create —in2.

Final (Question 2 continues...) Page 6 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 2 continued...)

Q2.5.4 (1 point) What is the minimum clock period this circuit can have to exhibit well-defined
behavior, given the above timings?

41 ps

Final (Question 2 continues...) Page 7 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

10
11
12
13

14
15
16
17

18

(Question 2 continued...)

(7 points) Alex wants to use lai to find and return the maximum value in an array of 32-bit signed

integers. All other load instructions are forbidden. You can assume that the array has at least one element.

You may only use registers a0, al, t0, and t1.

The description of 1ai rd rs1 imm is copied for your reference:

Rlrd] = Mem[R[rs1]][31:0]
Rlrs1] = R[rsi] + imm

max_element: Finds and returns the largest signed integer in an array.

a0

Pointer to the start of a signed integer array

Arguments
al

Number of elements in the array

Return value | a0

The largest value in the array

max_element:
mv t0 a0

lai a0 t0 4
Q2.6

addi al al -1
Q2.7

loop:
beq al _x0 done
Q2.8 Q2.9

lai t1 t0 4
Q2.10

bge a0 t1 skip
Q2.11

mv a0 t1
Q2.12

skip:

addi al a1l -1

Q2.13
j loop

done:

jir ra
Q2.14

Final

Page 8 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

DO W N

10
11

Can't Believe.

Q3 /’ It’s Not /

Hazardous

(5 points)

Complete the C function is_hazardous, which determines if two sequential R-type instructions, on a
5-stage pipeline with no forwarding, have any hazards between them (if so, return 1, otherwise 0).

To help with this task, write the utility function get_register_bits which returns a 5-bit register index
given an instruction’s machine code, and the location of the rightmost bit in that register field (i.e., the
number above the rightmost bit on the reference card).

For the examples below, note that the machine code representation of add x5 x9 x13 is 0x00D482B3.

Example Input Example Output
get_register_bits(0x00D482B3, <rightmost bit of rd>) 5
get_register_bits(0x00D482B3, <rightmost bit of rsi>) 9
get_register_bits(0x00D482B3, <rightmost bit of rs2>) 13
uint8_t get_register_bits(uint32_t inst, uint8_t rightmost) {

return (inst >> rightmost) & Ox1F;

Q3.1
}
bool is_hazardous(uint32_t instl, uint32_t inst2) {

// instl and inst2 are guaranteed to be R-type instructions
uint8_t a = get_register_bits(instl, _7);
3.2
uint8_t b = get_register_bits(inst2, 15);
Q3.3
uint8_t ¢ = get_register_bits(inst2, 20);
Q3.4
return a == b || a == c;
Q3.5
}
Final Page 9 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

~NOoO O WN -

R N EXO T

(15 points)

The Sui siblings Shu and Ling are pipelining their CPU and have asked you for help with hazards! For
the rest of this problem, consider the following code snippet:

auipc al 0
addi a0 x0 3
srai t0 a0 2
bne x0 tO done
. # omitted
done:
. # omitted

For Q4.1 — Q4.3, Ling has a 5-stage pipelined CPU, given on the reference card.

For a fully unoptimized datapath, which hazards occur when the program is run? Please indicate the two

instructions that cause the hazard as well as the number of stall cycles needed to fully resolve the hazard.

You may assume that:

+ There is no same cycle write-then-read
« There is no branch prediction
« There are no forwarding paths

« All hazards are resolved via stalling

Order the hazards by ascending line number of the originating instruction, then the affected instruction.

Q4.1 (2 points) Hazard 1:

Between instructions

Q4.2 (2 points) Hazard 2:

Between instructions

Q4.3 (2 points) Hazard 3:

Between instructions

Final (Question 4 continues...)

and Cycles Stalled
and Cycles Stalled
and Cycles Stalled

Page 10 of 23

This content is protected and may not be shared, uploaded, or distributed.

@ Data
O Control

@ Data
O Control

QO Data
@ Control

QO Structural
O N/A

QO Structural
O N/A

QO Structural
O N/A

CS 61C — Fall 2025

(Question 4 continued...)

Wanting to optimize Ling’s design even further, Shu adds forwarding paths to the 5-stage pipeline

Q4.4 (7 points) Fill in the control signals for each instruction according to the code on the previous page.
Select * if the signal value does not matter. A portion of the registers for each instruction has been

written below.

ALU

RegRead
Data1

RegRead
Data2

™
1

Y

I—» Branch

—» Comp
A

0
t
N
0

»\
L

Y
=]

4

— A

>ALU|AY

Out

(//FW

1

imm

RegRead
Data2

M

inst

N

inst

\i ! ' vy Vv v
linst (EX)| AFwd|BFwd| [Brun|Breq|BrLT| BSel |Asel| ALusel | inst (M) |

AFwd

BFwd

ASel BSel

PCSel

WBSel

RegWEn

auipc al 0

Oo
O1
@ =

Oo
O1
@ =

Oo
Q0!
O *

Oo
Q0!
O *

Qo
O1
O *

Qo
Qo
O *

Qo
Q0!
O *

addi a0 x0 3

Qo
O1
O *

Qo
O1
@ *

Qo
O1
O *

Qo
Q0!
O *

Qo
O1
O *

Qo
Qo
O =*

Qo
Qo
O *

srai t0 a0 2

Oo
Q!
O *

Oo
O1
@ =

Qo
O1
O *

Oo
[
O *

Qo
O1
O *

Qo
[!
O *

Qo
[!
O *

bne x0 t0 done

Qo
O1
O =

Oo
[!
O *

Oo
Q0!
O *

Oo
Q0!
O *

Qo
O1
O *

Qo
O1
[X

Qo
O1
O *

Q4.5 (2 points) For the code snippet on the previous page, how many cycles can we save by adding these

forwarding paths to the original 5-stage pipeline?

6 cycles

Final

Page 11 of 23

This content is protected and may not be shared, uploaded, or distributed.

CS 61C — Fall 2025

ASTEVEN SPELBERG

(17 points)

Elden is debugging his code and is analyzing how a cache behaves during the runtime of his program.

Q5.1 (2 points) Given a 16-bit address space and a 128 B 4-way set associative cache with a block
size of 8 B, determine the number of bits used for the tag, index, and offset.

Tag: 11 bit(s) Index: 2 bit(s) Offset: 3 bit(s)

For Q5.2 — Q5.6, assume that we have a direct-mapped cache, and a 16-bit address space with 10 bits
for tag, 2 bits for index, and 4 bits for offset.

1 | #define A_SIZE 16

2 | #define B_SIZE 4

3

4 | int main() {

5 uint32_t A[A_SIZE]; // Base address: OxFFOO0
6 uint32_t B[B_SIZE]; // Base address: O0xFFBO
7

8 /*

9 Code Omitted - Array A and B are populated with values
10 */
11
12 for (int i = 0; i < A_SIZE; i++) {
13 B[i % 4] = A[i] + B[i % 4];
14 }
15 | }

Q5.2 (4 points) Assume that the program has just completed the fourth (i
The current contents of main memory and the cache are provided in the tables below:

= 3) iteration of the for loop.

Cache
Index | Valid | Dirty | Tag |[+F|+E[+D|+C|+B|[+A|+9|+8(+7|+6|+5|+4|+3[+2[+1]|+0
0 1 0 0x3FC|(00]|10|32|00(CC|90|82|FE(11|9B|(3F|AD|(39|E4|1B|67
1 0 0 0x155 (93 |E1|A4|2B|7C|56|F1|0D(21|48 (B9 |EE[(5A|00(74|3C
2 0 0 O0x2A7 ([DE|31|F9|A4|81|C2(50|3B|(4E|7A|(16|CF|02|7D|AB|91
3 1 1 Ox3FE (2E|9A|D3|F1|7B|D4|19|0E|(A6|F5(5C|44(00]|61(34]|00

Final (Question 5 continues...)

Page 12 of 23

This content is protected and may not be shared, uploaded, or distributed.

CS 61C — Fall 2025

(Question 5 continued...)

Memory

Memory Address | +F [+E | +D | +C | +B [+A | +9 | +8 | +7 | +6 [+5 | +4 | +3 [+2 [+1 | +0
0xFFO00 00]110|32|00|CC|90 (82 |FE|11 |9B|3F | AD |39 | E4 | 1B | 67
0xFF10 D8 |3A| A1 |95 | 0B |57 |E3|C4|A1|4F (22| D9 |00| 19|20 |00
0xFF20 6F |01 (32 (E9|(EB|(84|71|CO|[55|39|D5|A2|2C|00|B4|8A
0xFF30 9A |4C (E6 (DF (01 (38| C2 |21 |F7|7D| A8 | 0C|B5E |91 |B7 | 3B
0xFF40 8E|4D| 73| A9 |51 |C2|FF|(O03|(A1|(CO|7D|DE|OB|62|E4 |81
0xFFBO 0072113 |00|7B|D4|(19|(OE (A6 |F5|5C |44 |00 |56 | 23|00

In the next iteration (i = 4), exactly three memory accesses occur in the following order:

1. Reading an integer from A
2. Reading an integer from B
3. Writing an integer to B

For each of these three accesses when i = 4, indicate whether it results in a cache hit or miss,
and specify the value read or written in hexadecimal. Assume that both the cache and main
memory are little-endian.

(a) Reading an integer from A

O Cache Hit
@ Cache Miss

0x00192000

(b) Reading an integer from B

@ Cache Hit
QO Cache Miss

0x00613400

(c) Writing an integer to B

@ Cache Hit
0x007A5400

QO Cache Miss

Joanne wants to evaluate the cache’s efficiency across the entire for loop (fromi = 0to i = 15). For
Q4.3 — Q4.6, assume that the cache starts cold at the beginning of the loop (i.e. all valid bits are initially
0), and that arrays A and B begin at the same base addresses given above.

Q5.3 (1 point) How many misses occur in the first iteration of the for loop, i = 0?

2

Final (Question 5 continues...) Page 13 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 5 continued...)

Q5.4 (1 point) How many misses occur in the second iteration of the for loop, i = 1?

0

Q5.5 (1 point) How many misses occur in the thirteenth iteration of the for loop, i = 12?

2

Q5.6 (3 points) Across the entire for loop, what is the overall hit rate of the cache? Express your answer
as a single reduced fraction

3/4

Nathan believes the previous cache design can be optimized. For Q4.7, assume the cache is now 2-way
set associative, with a size of 64 B and block size of 16 B. The cache uses the LRU replacement policy,
and starts off cold.

Q5.7 (3 points) Across the entire for loop, what is the new overall hit rate of the cache? Express your
answer as a single reduced fraction

43/48

Rachel is evaluating the performance of a new cache system with the following characteristics:

« Cache access time: 1 cycle
« Main memory access time: 20 cyles
« Cache hit rates
» For read accesses, the hit rate is 0.80
» For write accesses, the hit rate is 0.60
+ 25% of all memory accesses are writes

Q5.8 (2 points) On average, how many cycles does each memory access take? Hint: Use a weighted average
over reads and writes.

Final Page 14 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Q6 (10 points)

Oh no! Andrew’s cat ate Chloe’s cheat sheet! Your task is to help remake Chloe’s cheat sheet by filling
in information about virtual memory.

Q6.1 (1 point) The page table is indexed by:
OPPN @VPN (QTag Qlndex QoOffset QPA
Q6.2 (1 point) The TLB is updated with data from:

O Memory O Cache O TLB @ Page Table

Q6.3 (1 point) The PA is formed by concatenating

PPN and | Offset

Q6.4 (1 point) Recall that a cache has tag (T), index (I), and offset bits (O). Which of these has width
equivalent to the width of (T + I + O)?

OpPN @PA QVPN QVvA QTLB

For Q6.5 — Q6.7, you are given a single-level page table with the following properties:
« Virtual address (VA) width = 12 bits
» Page size = 16 B
« Page table entries (PTEs) formatted as follows:
15 14 13 12 0

Valid Dirty Status PPN

Q6.5 (2 points) What is the size of a fully-populated page table in bytes, given this setup? You may express
your answer in terms of powers of 2.

29bytes

Q6.6 (2 points) Break the address 0x61C into its VPN and offset bits respectively.

VPN: | 0x61 Offset: | 0xC
Q6.7 (2 points) How much physical RAM does the system have? Express your answer in IEC form (e.g.,
64 GiB)
128 KiB
Final Page 15 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

7 CASHE @

Help Elva 61Cashout at Chippy Bank!

(5 points)

Q7.1 (3 points) Elva executes the following function withdraw_money with two threads to withdraw

money from her Chippy Bank account.

1| void withdraw_money() {

2 int balance = 100;

3 #pragma omp parallel

4 {

5 int thread_id = omp_get_thread_num() ;
6 int amount = 40 + thread_id * 30;

7 if (balance >= amount) {

8 balance -= amount;

9 printf ("Withdrew %d\n", amount);
10 }
11 }
12 printf ("Final balance: %d", balance);
13|}

Select all of the following outputs that are possible:

- Withdrew 40
Final balance: 60

. Withdrew 70
Final balance: 30

Withdrew 40
B | vithdrew 70
Final balance: -10

Withdrew 40
B | vithdrew 70
Final balance: 60

Withdrew 40
B | vithdrew 70
Final balance: 30

Final (Question 7 continues...) Page 16 of 23

This content is protected and may not be shared, uploaded, or distributed.

CS 61C — Fall 2025

(Question 7 continued...)

Q7.2 (1 point) On which line would you add a #pragma omp critical directive to ensure that

withdraw_money never results in a negative balance, and the final balance accurately reflects how

much money Elva withdrew (i.e: if Elva attempts to withdraw 50 dollars, the balance reduces by

exactly 50 dollars).

@ Between line 6 and 7

QO Between line 7 and 8

QO Between line 10 and 11

O No critical section needed

Q7.3 (1 point) There is only one ATM machine available. Both Elva and Alex happen to arrive at the

same time to withdraw money from a shared bank account that has an initial balance of $100. Alex

executes Procedure A and Elva executes Procedure B.

Procedure A (Alex):

1.

DA

Acquire ATM_Lock

Acquire Account_Lock
Withdraw $10 from Account
Release Account_Lock
Release ATM_Lock

Procedure B (Elva):

1.

Gk L

Acquire Account_Lock
Acquire ATM_Lock
Withdraw $50 from Account
Release ATM_Lock

Release Account_Lock

Select all of the following outcomes that are possible:

[] Only Alex can finish withdrawal of $10

[] Only Elva can finish withdrawal of $50

B Alex finishes withdrawal of $10 and Elva finishes withdrawal of $50

B Neither Alex nor Elva can withdraw

Final

Page 17 of 23

This content is protected and may not be shared, uploaded, or distributed.

CS 61C — Fall 2025

Q8

You just got

(7 points)

(7 points) Complete the function sum_simd using SIMD vector instructions.

sum_simd: Computes the sum of values in an array that are greater than or equal to 128. The
function must use data-level parallelism (SIMD) to perform the calculation efficiently.

uint32_t *vals An array of 32-bit unsigned integers.
Arguments -
size_t num_elems | The number of elements. Guaranteed to be a multiple of 4.
The sum of all values in the array that are greater than
Return value | uint32_t or equal to 128. You may assume that the sum will not
overflow.

You have access to the following SIMD operations. A single vector is a 128-bit vector register capable
of holding four 32-bit integers. You may use at most one operation per blank.
a thess

» vector vec_load(uint32_t *A): Loads 4 integers at memory address A into a vector.

+ vector vec_setnum(uint32_t num): Creates a vector where every element is num.

« vector vec_cmpgt(vector A, vector B): Computes A > B (with unsigned numbers)
elementwise. Result is OxFFFFFFFF if true, O otherwise.

+ vector vec_and(vector A, vector B): Computes bitwise AND elementwise.

+ vector vec_add(vector A, vector B): Computes A + B elementwise.

« uint32_t vec_sum(vector A): Adds all elements of the vector and returns the scalar sum.

1 | uint32_t sum_simd(uint32_t *vals, size_t num_elems) {

2 vector _127 = vec_setnum(127);

3 uint32_t result = O;

4 vector sum = vec _setnum(0);

Q8.1
5 for (unsigned int i = 0; i < num _elems; i += 4) {
Q8.2
6 vector curr = vec_load(vals + i);
Q8.3
7 vector mask = vec_cmpgt(curr, 127);
Q8.4
8 curr = vec_and(curr, mask);
Q8.5
9 sum = vec_add(sum, curr);
8.6
10 }
11 result += vec sum(sum);
Q8.7

12 return result;

13|}
Final Page 18 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(5 points)

Hexodecimals
Erom Bose 16

Create a circuit using the fewest gates and registers that can flip the output on and off with an output
delay of one cycle. That is, every time the input is 1, the output changes state one cycle later.

Assume the input starts with a string of 0s and the output starts at 0.

Example Input | 0010001000110011100000
Example Output | 0001111000010001011111

Input } < Output

Clock

Solution: One possible solution to this question is as follows. Partial credit was granted on a case-by-
case basis to answers that were nearly functional or incorporated major elements of a correct solution.

Input Dl— D Q & { Output

Clock

Final Page 19 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

eNTRANCE
Q 10 o

MYSTERY SPOIT

SANTA CRUZ, CALIF - US.A.

(8 points)

A C function mystery(int a0, int al, int a2) compiles down to the following RISC-V code for a

32-bit machine and follows proper calling convention (i.e the return value should be left in a0).

mystery: beq
jal
next: 1lw
s1li
or
swW
loop: beq
add
addi
J
done: ret

© 00 N O O b WN -

=
= O

a2
t0
t1
t2
t1
t1
al
a0
al

x0 loop
next
20(t0)
a2 12
tl t2
20(t0)
x0 done
a0 al
al -1

loop

For Q10.1 — Q10.3, calculate the return value (in hexadecimal) for each call to mystery. Each call to

mystery is independent.

Q10.1 (2 points) mystery(1, 4, 0)

0OxB

Solution:

— 0xB.

def mystery(a0,al,a2):
for al in range(4,0,-1):
a0 = a0 + al
return a0

Adds up all the numbers from 1 to al (here 1+2+3+4=10) and adds it to a0 (here 1) so it’s 11

Q10.2 (2 points) mystery (1, 4, 1)

0x400

Final (Question 10 continues...)

This content is protected and may not be shared, uploaded, or distributed.

Page 20 of 23

CS 61C — Fall 2025

(Question 10 continued...)

Solution: The self-modifying code above the loop stuffs the a2 funct3 value to change the add
into sll (funct3=1), here making it

def mystery(al,al,a2):
for al in range(4,0,-1):
a0 = a0 << a1l
return a0

So it’s 1 with 1+2+3+4 0s on the right, or 0x400.

Q10.3 (2 points) mystery(1, 4, 4)

0x5

Solution: The self-modifying code above the loop stuffs the a2 funct3 value to change the add
into xor (funct3=4), here making it

def mystery(a0,al,a2):
for al in range(4,0,-1):
a0 = a0 xor al
return a0

So it’s 1 with 1 xor 4 xor 3 xor 2 xor 1, or 0x5.

For Q10.4, indicate what input to mystery would result in the return value as shown.

Q10.4 (2 points) mystery (OxBOBACAFE, 4,) -+ 2 // Hint: it’s less than 256

8

Solution: The key here is the realization that we don’t limit the a2 funct3, so if it’s bigger than
7 (and less than 256), the bits start leaking into rs1. If we go just one more (as in a2=8), then it
turns rs1’s value (a0) into al. That turns the loop to:

def mystery(a0,al,a2):
for al in range(4,0,-1):
a0 = al + al
return a0

...whose last iteration is a0 = 1 + 1.

Final (Question 10 continues...) Page 21 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

This page is left intentionally (mostly) blank.

Please do not tear off any pages from the exam.

Make sure you have completed all 10 questions on this exam.

Final Page 22 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Q11.2 If there’s anything else you want us to know, or you feel like there was an ambiguity in the exam,

please put it in the box below.

For ambiguities, you must qualify your answer and provide an answer for both interpretations. For
example, “if the question is asking about A, then my answer is X, but if the question is asking about
B, then my answer is Y”. You will only receive credit if it is a genuine ambiguity and both of your
answers are correct. We will only look at ambiguities if you request a regrade.

Solution: If you're reading this, you get some candy! %%

Final Page 23 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

	
	
	
	
	
	
	
	
	
	
	

