
CS 61C Garcia

Fall 2025 Final

Solutions last updated: Monday, December 29, 2025

Print Your Name:

Print Your Student ID:

Print the Name and Student ID of the person to your left:

Print the Name and Student ID of the person to your right:

Print the Name and Student ID of the person in front of you:

Print the Name and Student ID of the person behind you:

You have 170 minutes. There are 11 questions of varying credit. (100 points total)

Question: 1 2 3 4 5 6 7 8 9 10 11 Total

Points: 11 17 5 15 17 10 5 7 5 8 0 100

For questions with circular bubbles, you may

select only one choice.

Unselected option (Completely unfilled)

Don’t do this (it will be graded as incorrect)

Only one selected option (completely filled)

For questions with square checkboxes, you may

select one or more choices.

You can select

multiple squares

(Don’t do this)

Anything you write outside the answer boxes or you cross out will not be graded. If you write multiple

answers, your answer is ambiguous, or the bubble/checkbox is not entirely filled in, we will grade the

worst interpretation. For coding questions with blanks, you may write at most one statement per blank

and you may not use more blanks than provided.

If an answer requires hex input, you must only use capitalized letters (0xB0BACAFE instead of

0xb0bacafe). For hex and binary, please include prefixes in your answers unless otherwise specified,

and do not truncate any leading 0’s. For all other bases, do not add any prefixes or suffixes.

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others. I will

follow the rules of this exam.

Acknowledge that you have read and agree to the honor code above and sign your name below:

Page 1 of 23

This content is protected and may not be shared, uploaded, or distributed.

Clarifications made during the exam:

Q2.6 - 2.14: You may also use x0 and ra in your solution.

Q5: The blurb above Q5.3 should read “For Q5.3-5.6, assume that …“, and the blurb above Q5.7 should read

“For Q5.7, assume the …”

Q4.4: 2 is not an answer to any of the WBSel options

Final Page 2 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Q1 (11 points)

Q1.1 (1 point) Suppose we declare int8_t x = 0x9C; What is the decimal representation of x?

−100

Q1.2 (1 point) Suppose we execute the following C code on a 64-bit little-endian system.

1 // arr is located at address 0x10000000

2 int64_t arr[3] = {0x01020304, 0x10203040, 0xDE00ABBA};

3 printf("%d", strlen((char*) &arr[1])));

What would the printf statement output?

4

Q1.3 (2 points) Assume we are using the standard IEEE-754 Single Precision Floating Point Convention.

What is the smallest positive multiple of 2048 (2 Ki) that we cannot represent? Express your answer

in sums or differences of powers of 2.

235 + 211

Q1.4 (1 point) Which stage of CALL enables separate compilation of files in a multi-file program?

Compiler Assembler Linker Loader None of the above

Q1.5 (1 point) Which stage of CALL directly replaces C code with machine code?

Compiler Assembler Linker Loader None of the above

Q1.6 (1 point) Convert the following RISC-V hexadecimal machine code into its corresponding RISC-V

instruction. Express immediates in decimal and use the corresponding register names instead of

numbers (i.e. s5 instead of x21).

0x043C8713 ➡︎ addi a4 s9 67

Final (Question 1 continues…) Page 3 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 1 continued…)

1 # Takes a0 a1 a2 as arguments, returns one value in a0

2 stranger:

3 # Q1.7 Prologue

4 srli s0 s1 2

5 slli a2 a2 2

6 addi s2 t0 4

7

8 # Q1.8 Save

9 jal ra things

10 # Q1.8 Load

11

12 add a0 a0 a1

13

14 # Q1.7 Epilogue

15 jr ra

16

17 # Takes a0 and a1 as arguments, returns two values in a0 and a1

18 things:

19 add a0 a0 a1

20 sub a1 a0 a1

21 jr ra

For Q1.7 — Q1.8, select the minimum number of registers which need to be saved and restored to satisfy

calling convention.

Q1.7 (1 point) Select all registers we need to save/restore from the stack at the locations marked Q1.7.

a0 s0 a1 s1 a2 s2 t0 t1 None of the above

Q1.8 (1 point) Select all registers we need to save/restore from the stack at the locations marked Q1.8.

a0 s0 a1 s1 a2 s2 t0 t1 None of the above

Q1.9 (2 points) Anto has a program where 1/4 of it is sequential (i.e., not parallelizable), which is executed

on 3 cores. What is the max speedup this program can achieve? For full credit, express your answer

in its most simplified form.

2× speedup

Final Page 4 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Q2 (17 points)

Alex would like to implement a new RISC-V instruction, lai rd rs1 imm, with the following function

ality.

R[rd] = Mem[R[rs1]][31:0]

R[rs1] = R[rs1] + imm

(2 points) This instruction can be implemented using two consecutive, existing RISC-V instructions. Write

the instructions and the arguments required to match the functionality of lai. Write your answer in

terms of lai parameters: rd, rs1, and imm.

1 lw rd 0(rs1)
Q2.1

 # Instruction 1

2 addi rs1 rs1 imm
Q2.2

 # Instruction 2

Q2.3 Oh no! Alex’s dog has eaten their immediate generator design. They tried to recall the design from

memory but they need some help remembering some details for their Logisim implementation.

Q2.3.1 (1 point) Considering that lai is best represented by an I-type format, what range of

bits should be selected by the bottom branch of the splitter? Express your answer in the

form MSB:LSB (inclusive).

31 : 20

Q2.3.2 (1 point) What “Extension Type” should the bit extender use?

Zero One Sign Input None of the above

Final (Question 2 continues…) Page 5 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 2 continued…)

Q2.4 (3 points) Now that the immediate generator is fixed, Alex can implement the lai instruction from

earlier. What additional changes are required to our single-cycle datapath to implement this, with

as few changes as possible? Select all that apply.

Add a new read input to the RegFile

Add a new read output to the RegFile

Add a new write data & index input to the RegFile and update the corresponding control logic

Add a third possible value for ASel and update the corresponding MUX/control logic

Add a third possible value for BSel and update the corresponding MUX/control logic

Add a third possible value for PCSel and update the corresponding MUX/control logic

Add a MUX in front of DMEM’s addr input and a new control line to control it

Add a MUX in front of DMEM’s wdata input and add a new control line to control it

Add a fourth possible value for WBSel and update the corresponding MUX/control logic

Widen RegWEn to 2 bits

None of the above

Q2.5 While we were fixing our pipeline, Alex’s dog bit another circuit component! Enoch proposes the

following to replace the missing component. Assume each input and output label is connected to a

register.

𝑡𝙾𝚁 = 6 ps

𝑡𝙽𝙾𝚃 = 5 ps

𝑡𝚂𝙿𝙻𝙸𝚃𝚃𝙴𝚁 = 7 ps

𝑡𝙰𝙳𝙳𝙴𝚁 = 9 ps

𝑡𝙲𝙻𝙺-𝚃𝙾-𝚀 = 2 ps

𝑡𝙷𝙾𝙻𝙳 = 1 ps

𝑡𝚂𝙴𝚃𝚄𝙿 = 3 ps

Q2.5.3 (2 points) Express out1 in terms of in1, in2 and arithmetic (not bitwise) operators.

out1 = in1 - in2

Solution: This circuit is a subtractor! Much of the logic is ‘flipping and adding 1’ in2

to negate it, before then adding that value to in1.

Notice that by ORing in1 with ~in1, the result is always 0xFFFFFFFF. Using splitters

and a constant, we then create a constant 0x00000001 signal. This is added to ~in2

to create -in2.

Final (Question 2 continues…) Page 6 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 2 continued…)

Q2.5.4 (1 point) What is the minimum clock period this circuit can have to exhibit well-defined

behavior, given the above timings?

41 ps

Final (Question 2 continues…) Page 7 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 2 continued…)

(7 points) Alex wants to use lai to find and return the maximum value in an array of 32-bit signed

integers. All other load instructions are forbidden. You can assume that the array has at least one element.

You may only use registers a0, a1, t0, and t1.

The description of lai rd rs1 imm is copied for your reference:

R[rd] = Mem[R[rs1]][31:0]

R[rs1] = R[rs1] + imm

max_element: Finds and returns the largest signed integer in an array.

a0 Pointer to the start of a signed integer array
Arguments

a1 Number of elements in the array

Return value a0 The largest value in the array

1 max_element:

2 mv t0 a0

3 lai a0 t0 4
Q2.6

4 addi a1 a1 -1
Q2.7

5

6 loop:

7 beq a1 x0
Q2.8

 done
Q2.9

8 lai t1 t0 4
Q2.10

9 bge a0 t1 skip
Q2.11

10 mv a0 t1
Q2.12

11

12 skip:

13 addi a1 a1 -1
Q2.13

14 j loop

15

16 done:

17 jr ra
Q2.14

18

Final Page 8 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Q3 (5 points)

Complete the C function is_hazardous, which determines if two sequential R-type instructions, on a

5-stage pipeline with no forwarding, have any hazards between them (if so, return 1, otherwise 0).

To help with this task, write the utility function get_register_bits which returns a 5-bit register index

given an instruction’s machine code, and the location of the rightmost bit in that register field (i.e., the

number above the rightmost bit on the reference card).

For the examples below, note that the machine code representation of add x5 x9 x13 is 0x00D482B3.

Example Input Example Output

get_register_bits(0x00D482B3, <rightmost bit of rd>) 5

get_register_bits(0x00D482B3, <rightmost bit of rs1>) 9

get_register_bits(0x00D482B3, <rightmost bit of rs2>) 13

1 uint8_t get_register_bits(uint32_t inst, uint8_t rightmost) {

2 return (inst >> rightmost) & 0x1F
Q3.1

;

3 }

4

5 bool is_hazardous(uint32_t inst1, uint32_t inst2) {

6 // inst1 and inst2 are guaranteed to be R-type instructions

7 uint8_t a = get_register_bits(inst1, 7
Q3.2

);

8 uint8_t b = get_register_bits(inst2, 15
Q3.3

);

9 uint8_t c = get_register_bits(inst2, 20
Q3.4

);

10 return a == b || a == c
Q3.5

;

11 }

Final Page 9 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Q4 (15 points)

The Sui siblings Shu and Ling are pipelining their CPU and have asked you for help with hazards! For

the rest of this problem, consider the following code snippet:

1 auipc a1 0

2 addi a0 x0 3

3 srai t0 a0 2

4 bne x0 t0 done

5 ... # omitted

6 done:

7 ... # omitted

For Q4.1 – Q4.3, Ling has a 5-stage pipelined CPU, given on the reference card.

For a fully unoptimized datapath, which hazards occur when the program is run? Please indicate the two

instructions that cause the hazard as well as the number of stall cycles needed to fully resolve the hazard.

You may assume that:

• There is no same cycle write-then-read

• There is no branch prediction

• There are no forwarding paths

• All hazards are resolved via stalling

Order the hazards by ascending line number of the originating instruction, then the affected instruction.

Q4.1 (2 points) Hazard 1:

Between instructions 2 and 3 Cycles Stalled 3
Data Structural

Control N/A

Q4.2 (2 points) Hazard 2:

Between instructions 3 and 4 Cycles Stalled 3
Data Structural

Control N/A

Q4.3 (2 points) Hazard 3:

Between instructions 4 and 5 Cycles Stalled 3
Data Structural

Control N/A

Final (Question 4 continues…) Page 10 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 4 continued…)

Wanting to optimize Ling’s design even further, Shu adds forwarding paths to the 5-stage pipeline

Q4.4 (7 points) Fill in the control signals for each instruction according to the code on the previous page.

Select * if the signal value does not matter. A portion of the registers for each instruction has been

written below.

AFwd BFwd ASel BSel PCSel WBSel RegWEn

auipc a1 0

0

1

*

0

1

*

0

1

*

0

1

*

0

1

*

0

1

*

0

1

*

addi a0 x0 3

0

1

*

0

1

*

0

1

*

0

1

*

0

1

*

0

1

*

0

1

*

srai t0 a0 2

0

1

*

0

1

*

0

1

*

0

1

*

0

1

*

0

1

*

0

1

*

bne x0 t0 done

0

1

*

0

1

*

0

1

*

0

1

*

0

1

*

0

1

*

0

1

*

Q4.5 (2 points) For the code snippet on the previous page, how many cycles can we save by adding these

forwarding paths to the original 5-stage pipeline?

6 cycles

Final Page 11 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Q5 (17 points)

Elden is debugging his code and is analyzing how a cache behaves during the runtime of his program.

Q5.1 (2 points) Given a 16-bit address space and a 128 B 4-way set associative cache with a block

size of 8 B, determine the number of bits used for the tag, index, and offset.

Tag: 11 bit(s) Index: 2 bit(s) Offset: 3 bit(s)

For Q5.2 — Q5.6, assume that we have a direct-mapped cache, and a 16-bit address space with 10 bits

for tag, 2 bits for index, and 4 bits for offset.

1 #define A_SIZE 16

2 #define B_SIZE 4

3

4 int main() {

5 uint32_t A[A_SIZE]; // Base address: 0xFF00

6 uint32_t B[B_SIZE]; // Base address: 0xFFB0

7

8 /*

9 Code Omitted - Array A and B are populated with values

10 */

11

12 for (int i = 0; i < A_SIZE; i++) {

13 B[i % 4] = A[i] + B[i % 4];

14 }

15 }

Q5.2 (4 points) Assume that the program has just completed the fourth (i = 3) iteration of the for loop.

The current contents of main memory and the cache are provided in the tables below:

Cache

Index Valid Dirty Tag +F +E +D +C +B +A +9 +8 +7 +6 +5 +4 +3 +2 +1 +0

0 1 0 0x3FC 00 10 32 00 CC 90 82 FE 11 9B 3F AD 39 E4 1B 67

1 0 0 0x155 93 E1 A4 2B 7C 56 F1 0D 21 48 B9 EE 5A 00 74 3C

2 0 0 0x2A7 DE 31 F9 A4 81 C2 50 3B 4E 7A 16 CF 02 7D AB 91

3 1 1 0x3FE 2E 9A D3 F1 7B D4 19 0E A6 F5 5C 44 00 61 34 00

Final (Question 5 continues…) Page 12 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 5 continued…)

Memory

Memory Address +F +E +D +C +B +A +9 +8 +7 +6 +5 +4 +3 +2 +1 +0

0xFF00 00 10 32 00 CC 90 82 FE 11 9B 3F AD 39 E4 1B 67

0xFF10 D8 3A A1 95 0B 57 E3 C4 A1 4F 22 D9 00 19 20 00

0xFF20 6F 01 32 E9 EB 84 71 C0 55 39 D5 A2 2C 00 B4 8A

0xFF30 9A 4C E6 DF 01 38 C2 21 F7 7D A8 0C 5E 91 B7 3B

0xFF40 8E 4D 73 A9 51 C2 FF 03 A1 C9 7D DE 0B 62 E4 81

...

0xFFB0 00 72 13 00 7B D4 19 0E A6 F5 5C 44 00 56 23 00

In the next iteration (i = 4), exactly three memory accesses occur in the following order:

1. Reading an integer from A

2. Reading an integer from B

3. Writing an integer to B

For each of these three accesses when i = 4, indicate whether it results in a cache hit or miss,

and specify the value read or written in hexadecimal. Assume that both the cache and main

memory are little-endian.

(a) Reading an integer from A

Cache Hit

Cache Miss
0x00192000

(b) Reading an integer from B

Cache Hit

Cache Miss
0x00613400

(c) Writing an integer to B

Cache Hit

Cache Miss
0x007A5400

Joanne wants to evaluate the cache’s efficiency across the entire for loop (from i = 0 to i = 15). For

Q4.3 — Q4.6, assume that the cache starts cold at the beginning of the loop (i.e. all valid bits are initially

0), and that arrays A and B begin at the same base addresses given above.

Q5.3 (1 point) How many misses occur in the first iteration of the for loop, i = 0?

2

Final (Question 5 continues…) Page 13 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 5 continued…)

Q5.4 (1 point) How many misses occur in the second iteration of the for loop, i = 1?

0

Q5.5 (1 point) How many misses occur in the thirteenth iteration of the for loop, i = 12?

2

Q5.6 (3 points) Across the entire for loop, what is the overall hit rate of the cache? Express your answer

as a single reduced fraction

3/4

Nathan believes the previous cache design can be optimized. For Q4.7, assume the cache is now 2-way

set associative, with a size of 64 B and block size of 16 B. The cache uses the LRU replacement policy,

and starts off cold.

Q5.7 (3 points) Across the entire for loop, what is the new overall hit rate of the cache? Express your

answer as a single reduced fraction

43/48

Rachel is evaluating the performance of a new cache system with the following characteristics:

• Cache access time: 1 cycle

• Main memory access time: 20 cyles

• Cache hit rates

‣ For read accesses, the hit rate is 0.80

‣ For write accesses, the hit rate is 0.60

• 25% of all memory accesses are writes

Q5.8 (2 points) On average, how many cycles does each memory access take? Hint: Use a weighted average

over reads and writes.

6

Final Page 14 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Q6 (10 points)

Oh no! Andrew’s cat ate Chloe’s cheat sheet! Your task is to help remake Chloe’s cheat sheet by filling

in information about virtual memory.

Q6.1 (1 point) The page table is indexed by:

PPN VPN Tag Index Offset PA

Q6.2 (1 point) The TLB is updated with data from:

Memory Cache TLB Page Table

Q6.3 (1 point) The PA is formed by concatenating

PPN and Offset

Q6.4 (1 point) Recall that a cache has tag (T), index (I), and offset bits (O). Which of these has width

equivalent to the width of (T + I + O)?

PPN PA VPN VA TLB

For Q6.5 – Q6.7, you are given a single-level page table with the following properties:

• Virtual address (VA) width = 12 bits

• Page size = 16 B

• Page table entries (PTEs) formatted as follows:

15 14 13 12 0

Valid Dirty Status PPN

Q6.5 (2 points) What is the size of a fully-populated page table in bytes, given this setup? You may express

your answer in terms of powers of 2.

29bytes

Q6.6 (2 points) Break the address 0x61C into its VPN and offset bits respectively.

VPN: 0x61 Offset: 0xC

Q6.7 (2 points) How much physical RAM does the system have? Express your answer in IEC form (e.g.,

64 GiB)

128 KiB

Final Page 15 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Q7 (5 points)

Help Elva 61Cashout at Chippy Bank!

Q7.1 (3 points) Elva executes the following function withdraw_money with two threads to withdraw

money from her Chippy Bank account.

1 void withdraw_money() {

2 int balance = 100;

3 #pragma omp parallel

4 {

5 int thread_id = omp_get_thread_num();

6 int amount = 40 + thread_id * 30;

7 if (balance >= amount) {

8 balance -= amount;

9 printf("Withdrew %d\n", amount);

10 }

11 }

12 printf("Final balance: %d", balance);

13 }

Select all of the following outputs that are possible:

Withdrew 40

Final balance: 60

Withdrew 70

Final balance: 30

Withdrew 40

Withdrew 70

Final balance: -10

Withdrew 40

Withdrew 70

Final balance: 60

Withdrew 40

Withdrew 70

Final balance: 30

Final (Question 7 continues…) Page 16 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 7 continued…)

Q7.2 (1 point) On which line would you add a #pragma omp critical directive to ensure that

withdraw_money never results in a negative balance, and the final balance accurately reflects how

much money Elva withdrew (i.e: if Elva attempts to withdraw 50 dollars, the balance reduces by

exactly 50 dollars).

Between line 6 and 7

Between line 7 and 8

Between line 10 and 11

No critical section needed

Q7.3 (1 point) There is only one ATM machine available. Both Elva and Alex happen to arrive at the

same time to withdraw money from a shared bank account that has an initial balance of $100. Alex

executes Procedure A and Elva executes Procedure B.

Procedure A (Alex):

1. Acquire ATM_Lock

2. Acquire Account_Lock

3. Withdraw $10 from Account

4. Release Account_Lock

5. Release ATM_Lock

Procedure B (Elva):

1. Acquire Account_Lock

2. Acquire ATM_Lock

3. Withdraw $50 from Account

4. Release ATM_Lock

5. Release Account_Lock

Select all of the following outcomes that are possible:

Only Alex can finish withdrawal of $10

Only Elva can finish withdrawal of $50

Alex finishes withdrawal of $10 and Elva finishes withdrawal of $50

Neither Alex nor Elva can withdraw

Final Page 17 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Q8 (7 points)

(7 points) Complete the function sum_simd using SIMD vector instructions.

sum_simd: Computes the sum of values in an array that are greater than or equal to 128. The

function must use data-level parallelism (SIMD) to perform the calculation efficiently.

uint32_t *vals An array of 32-bit unsigned integers.
Arguments

size_t num_elems The number of elements. Guaranteed to be a multiple of 4.

Return value uint32_t

The sum of all values in the array that are greater than

or equal to 128. You may assume that the sum will not

overflow.

You have access to the following SIMD operations. A single vector is a 128-bit vector register capable

of holding four 32-bit integers. You may use at most one operation per blank.

a thess

• vector vec_load(uint32_t *A): Loads 4 integers at memory address A into a vector.

• vector vec_setnum(uint32_t num): Creates a vector where every element is num.

• vector vec_cmpgt(vector A, vector B): Computes A > B (with unsigned numbers)

elementwise. Result is 0xFFFFFFFF if true, 0 otherwise.

• vector vec_and(vector A, vector B): Computes bitwise AND elementwise.

• vector vec_add(vector A, vector B): Computes A + B elementwise.

• uint32_t vec_sum(vector A): Adds all elements of the vector and returns the scalar sum.

1 uint32_t sum_simd(uint32_t *vals, size_t num_elems) {

2 vector _127 = vec_setnum(127);

3 uint32_t result = 0;

4 vector sum = vec_setnum(0)
Q8.1

;

5 for (unsigned int i = 0; i < num_elems
Q8.2

; i += 4) {

6 vector curr = vec_load(vals + i
Q8.3

);

7 vector mask = vec_cmpgt(curr, _127)
Q8.4

;

8 curr = vec_and(curr, mask)
Q8.5

;

9 sum = vec_add(sum, curr)
Q8.6

;

10 }

11 result += vec_sum(sum)
Q8.7

;

12 return result;

13 }

Final Page 18 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Q9 (5 points)

Create a circuit using the fewest gates and registers that can flip the output on and off with an output

delay of one cycle. That is, every time the input is 1, the output changes state one cycle later.

Assume the input starts with a string of 0s and the output starts at 0.

Example Input 0010001000110011100000

Example Output 0001111000010001011111

Solution: One possible solution to this question is as follows. Partial credit was granted on a case-by-

case basis to answers that were nearly functional or incorporated major elements of a correct solution.

Final Page 19 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Q10 (8 points)

A C function mystery(int a0, int a1, int a2) compiles down to the following RISC-V code for a

32-bit machine and follows proper calling convention (i.e the return value should be left in a0).

1 mystery: beq a2 x0 loop

2 jal t0 next

3 next: lw t1 20(t0)

4 slli t2 a2 12

5 or t1 t1 t2

6 sw t1 20(t0)

7 loop: beq a1 x0 done

8 add a0 a0 a1

9 addi a1 a1 -1

10 j loop

11 done: ret

For Q10.1 – Q10.3, calculate the return value (in hexadecimal) for each call to mystery. Each call to

mystery is independent.

Q10.1 (2 points) mystery(1, 4, 0)

0xB

Solution:

def mystery(a0,a1,a2):

 for a1 in range(4,0,-1):

 a0 = a0 + a1

 return a0

Adds up all the numbers from 1 to a1 (here 1+2+3+4=10) and adds it to a0 (here 1) so it’s 11

→ 0xB.

Q10.2 (2 points) mystery(1, 4, 1)

0x400

Final (Question 10 continues…) Page 20 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 10 continued…)

Solution: The self-modifying code above the loop stuffs the a2 funct3 value to change the add

into sll (funct3=1), here making it

def mystery(a0,a1,a2):

 for a1 in range(4,0,-1):

 a0 = a0 << a1

 return a0

So it’s 1 with 1+2+3+4 0s on the right, or 0x400.

Q10.3 (2 points) mystery(1, 4, 4)

0x5

Solution: The self-modifying code above the loop stuffs the a2 funct3 value to change the add

into xor (funct3=4), here making it

def mystery(a0,a1,a2):

 for a1 in range(4,0,-1):

 a0 = a0 xor a1

 return a0

So it’s 1 with 1 xor 4 xor 3 xor 2 xor 1, or 0x5.

For Q10.4, indicate what input to mystery would result in the return value as shown.

Q10.4 (2 points) mystery(0xB0BACAFE, 4,) → 2 // Hint: it’s less than 256

8

Solution: The key here is the realization that we don’t limit the a2 funct3, so if it’s bigger than

7 (and less than 256), the bits start leaking into rs1. If we go just one more (as in a2=8), then it

turns rs1’s value (a0) into a1. That turns the loop to:

def mystery(a0,a1,a2):

 for a1 in range(4,0,-1):

 a0 = a1 + a1

 return a0

…whose last iteration is a0 = 1 + 1.

Final (Question 10 continues…) Page 21 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

This page is left intentionally (mostly) blank.

Please do not tear off any pages from the exam.

Make sure you have completed all 10 questions on this exam.

Final Page 22 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Q11 (0 points)

Q11.1 Favorite pet from the below options?

Q11.2 If there’s anything else you want us to know, or you feel like there was an ambiguity in the exam,

please put it in the box below.

For ambiguities, you must qualify your answer and provide an answer for both interpretations. For

example, “if the question is asking about A, then my answer is X, but if the question is asking about

B, then my answer is Y”. You will only receive credit if it is a genuine ambiguity and both of your

answers are correct. We will only look at ambiguities if you request a regrade.

Solution: If you’re reading this, you get some candy! 🍬

Final Page 23 of 23 CS 61C — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

	
	
	
	
	
	
	
	
	
	
	

