You are viewing this thread in readonly mode.

[Midterm] Past Exams - 2021 #489

Jero Wang sTaFF 1,422
Last year in Exam - Midterm VIEWS

You can find the past exams here: https://cs61c.org/fa23/resources/exams/. Please check the
linked past Piazza/Ed Q&A PDFs first before asking here. Many of the questions are already
answered in those! Video walkthroughs (if available), are also linked on that page!

When posting questions, please reference the semester, exam, and question in this format so
it's easier for students and staff to search for similar questions:

Semester-Exam-Question Number

For example: SP22-Final-Q1, or SU22-MT-Q3

Anonymous Otter 12mth #489dcb | Unresolved
FA21-Final-Q2.4

| am really confused on how to approach this problem with FP. Could a staff walk through it
please?

D1

Anonymous Otter 12mth #489dca = Unresolved
SP21-MT-Q7b:

Could one of the staff please give me a walk through on how to approach this problem. | couldn't
even understand the description of what was being asked. Furthermore, the solutions to this
problem make no semantical sense to me. Please help!!

@ eee

Anonymous Barracuda 1y #489dbd v Resolved
FA21-MT-Q3.1

| don't understand why Set the contents of the extra union in ret to be all zeros means that ret-
>extra.d = 0 cuz it just set the value of double d. What about a, b, and c?
\2RTE

Erik Yang sTAFF 1y #489dbe

a union is different than a struct, in that the size of the union is equal to the largest field (in
bytes). Since a double is the largest field in that struct, you only need to set that to be zero.
\2TE

Anonymous Hawk 1y #489dae @ v/ Resolved

FA21-Final-Q6.3, can anyone explain what it means that "Y never distinguishes between 1 and 0"
thus "Y never affects the result of our output”. | think Y does affect the output. When Y is O, the

https://edstem.org/us/courses/43491/discussion/3527332
https://edstem.org/us/courses/43491/discussion/3527332
https://cs61c.org/fa23/resources/exams/
https://edstem.org/us/courses/43491/discussion/3527332?comment=9106497
https://edstem.org/us/courses/43491/discussion/3527332?comment=9106497
https://edstem.org/us/courses/43491/discussion/3527332?comment=9105428
https://edstem.org/us/courses/43491/discussion/3527332?comment=9105428
https://edstem.org/us/courses/43491/discussion/3527332?comment=8303032
https://edstem.org/us/courses/43491/discussion/3527332?comment=8303032
https://edstem.org/us/courses/43491/discussion/3527332?comment=8304468
https://edstem.org/us/courses/43491/discussion/3527332?comment=8304468
https://edstem.org/us/courses/43491/discussion/3527332?comment=8292596
https://edstem.org/us/courses/43491/discussion/3527332?comment=8292596

answer is undetermined and when Y is 1 the answer is determined. Also how to deal with this
problem regarding the X?

Solution: Staff solution: W A Z
Other answers may be possible (Notably, this question can yield a score well below par).

In this case, we note that there’s never a time when Y distinguishes between 1 and 0; as such,
Y never affects the result of our output, and we can look at the reduced truth table containing
only W and Z.

Qe

Anonymous Giraffe 1y #489dad =+ Resolved
SP21-Final-Q6a

How is the sizeof(struct foo) 12?7 and How does swapping b and b increase the size of the
structure?

6. C Structures
(a) (6.0 points) The Structure of Structures
i. Assuming a 32-bit architecture with RISC-V alignment rules:
Consider the following structure definition and code:

struct foo {
char a;
uintl6_t b;
char x*c;
struct foo *d;

}

What is sizeof (struct foo) (Answer as an integer, with no units)?

12

ii. If b and c are swapped, this increases the size of the structure:

True

O True
O False

Sam Xu sTAFF 1y #489daf

char a takes one byte, and uint16_t b takes two bytes. However, uintl16_t must have
byte-aligned to 2 bytes, so after put one-byte char a, the computer will put one byte as
padding. Then, char a + uintl6_t b takes four bytes. Then both pointers c and d take 8
bytes, the total is 12 bytes.

D1

Anonymous Hawk 1y #489cfe ' v Resolved

SP21-MT-Q2C((ii), | understand what the solution says, but | also remember that the linker is the
step where absolute addressing is assured, while the assembler still uses relative addressing.
Then how can the assembler produce an object file that specifies the exact location of the
components in the object file?

https://edstem.org/us/courses/43491/discussion/3527332?comment=8292399
https://edstem.org/us/courses/43491/discussion/3527332?comment=8292399
https://edstem.org/us/courses/43491/discussion/3527332?comment=8292606
https://edstem.org/us/courses/43491/discussion/3527332?comment=8292606
https://edstem.org/us/courses/43491/discussion/3527332?comment=8291711
https://edstem.org/us/courses/43491/discussion/3527332?comment=8291711

ii. (0.5 pt) Object files are distinctly segmented into components and will tell the linker exactly how
many bytes and where each component is located.

@® True
(O False

True; the object file header tells the linker the size and location of the following components of the
object file: text segment, data segment, relocation table, symbol table, and debugging information.

Sam Xu STAFF 1y #489dbf

The assember will not tell the absolute address of the functions. Instead, it uses symbolic
labels and relative offsets to represent memory addresses in a way that's independent of the
final memory layout. The Linker uses these information and figure out the absolute address.

Anonymous Hawk 1y #489cee ' + Resolved

SP21-Final-Q1C, what does "generate parse trees" mean and why the compile? | didn't remember
it was discussed in lecture...

C. Generates parse trees.
L Compiler
] Assembler
O Linker
[J Loader

Catherine Van Keuren sTaFF 1y #489dbc
Parse trees were not discussed in lecture, thus out of scope for this semester.
D1

Anonymous Armadillo 1y #489ced = v Resolved

Sp 21 Final Q6.2

v. load sl->next[level] into t0

slli t1 t1 4 add t0 t0 t1 lw t0 t0(4)

Don't really understand why we are left shifting by 4 and loading 4(t0), probably have something
to do with size of the struct which | think is 8 since it contains two pointers.
@ oee

Anonymous Armadillo 1y #489cff

Update: looked at walkthrough video and the solution in the video is literally different from
the answer key. So uh idk whats going on anymore.

https://edstem.org/us/courses/43491/discussion/3527332?comment=8305722
https://edstem.org/us/courses/43491/discussion/3527332?comment=8305722
https://edstem.org/us/courses/43491/discussion/3527332?comment=8291399
https://edstem.org/us/courses/43491/discussion/3527332?comment=8291399
https://edstem.org/us/courses/43491/discussion/3527332?comment=8297901
https://edstem.org/us/courses/43491/discussion/3527332?comment=8297901
https://edstem.org/us/courses/43491/discussion/3527332?comment=8291180
https://edstem.org/us/courses/43491/discussion/3527332?comment=8291180
https://edstem.org/us/courses/43491/discussion/3527332?comment=8291896
https://edstem.org/us/courses/43491/discussion/3527332?comment=8291896

Anonymous Mole 1y #489cdf =+ Resolved
Fall 2021 MT 1, Q2.1

Q2 Now, Where Did I Put Those Strings? (10 points)
Consider the following code:

char *foo() {
char *strl = "Hello World";
char str2[] = "Hello World";
char *str3 = malloc(sizeof(char) * X);
strcpy(str3, "Hello World");
// INSERT CODE FROM PARTS 5-7
}

The char *strcpy(char *dest, char *src) copies the string pointed to by src, including the
terminating null byte ("\0"'), to the buffer pointed to by dest. The strings may not overlap, and the
destination string dest must be large enough to receive the copy.

Q2.1 (1 point) Where is *str1 located in memory?

QO code @ static QO heap QO stack

Q2.2 (1 point) Where is *str2 located in memory?

QO code QO static QO heap @ stack

r 1

| don't understand why the answer to 2.1 is static? Both str1 and str2 were declared inside the foo
function; therefore, shouldn't both be stored in the stack?

Eddy Byun sTAaFF 1y #489cea
#489aed

Anonymous Mole 1y #489ceb
Followup:
Q2.8 (1 point) Printing the string.
B printf("%s\n", strl); M printf("%s\n", str3);

M printf("%s\n", str2); [None of the above

Solution: printf("%s\n", strl); and printf("%s\n", str2); and printf("%s\n",
str3);

Recall that printf("%s\n", strl); dereferences the strl pointer and prints out the string
stored at that address (up until the null terminator).

Since strl, str2, and str3 all point to a valid null-terminated string, it is safe to call printf
on all three of them.

Grading: Each answer choice was graded independently, just like in the previous subparts.

How can we print str2? If str2 is allocated in stack memory, | though we couldn't reference it
outside of the foo function?

https://edstem.org/us/courses/43491/discussion/3527332?comment=8288578
https://edstem.org/us/courses/43491/discussion/3527332?comment=8288578
https://edstem.org/us/courses/43491/discussion/3527332?comment=8288679
https://edstem.org/us/courses/43491/discussion/3527332?comment=8288679
https://edstem.org/us/courses/43491/discussion/3527332?comment=8260784
https://edstem.org/us/courses/43491/discussion/3527332?comment=8288689
https://edstem.org/us/courses/43491/discussion/3527332?comment=8288689

Justin Yokota starF 1y #489cef

We can't reference it after returning from foo; if you think about RISC-V, we can see that
the sp moved back up, and any future function call could overwrite that stack data. In
this case, we're making the printf within foo still, so the stack data is still valid.

@ eee

Anonymous Cobra 1y #489cde @ v Resolved
SP21-MT-Q4

If we have a register a0 that has a string, how do we access its bytes? If a® was a pointer to the
string, we could do manipulations like @(a0) and so forth, but if ae itself has the string, what do
we do? The solution here for example has the line 1bu te 0(a0) , butif ae has the string itself
and not the pointer to the string, how does that work?

Anonymous Lapwing 1y #489cdb = v Resolved
FA21-MT-Q4.3

| believe floating point numbers have both +0 and -0. Wouldn't this make 509 the correct answer?
(assuming that +/- 0 are 2 different numbers from question 4.2)

2179 - 2 (+/- infinity) - 1 (negative zero, since positive 0 is included in unsigned int) = 509

Justin Yokota sTarF 1y #489cfa

Where did you get the 229 from?

Anonymous Lapwing 1y #489cfb
218 (8 bits of significand) * 2 (1 bit for sign) = 2A9
O .

Justin Yokota staFF 1y #489cfc

“ Replying to Anonymous Lapwing

Why does that tell you the number of values that the 16-bit integer can represent, but
the floating point number can't?

@ eee

Anonymous Lapwing 1y #489cfd

“ Replying to Justin Yokota

2179 is the number of values that the floating point allocates for NaNs and +/- infinity.
The answer in the solutions is 2A9 - 2 (for +/- infinity). However, floating point numbers
also allocate one value for -0, which | think would make the answer 509.

@ oo

Justin Yokota sTaFF 1y #489daa

“ Replying to Anonymous Lapwing

Why would that subtract? Is the binary for the value representing -0 not a valid number
as a 16-bit integer?

@ eee

https://edstem.org/us/courses/43491/discussion/3527332?comment=8291469
https://edstem.org/us/courses/43491/discussion/3527332?comment=8291469
https://edstem.org/us/courses/43491/discussion/3527332?comment=8288508
https://edstem.org/us/courses/43491/discussion/3527332?comment=8288508
https://edstem.org/us/courses/43491/discussion/3527332?comment=8286235
https://edstem.org/us/courses/43491/discussion/3527332?comment=8286235
https://edstem.org/us/courses/43491/discussion/3527332?comment=8291502
https://edstem.org/us/courses/43491/discussion/3527332?comment=8291502
https://edstem.org/us/courses/43491/discussion/3527332?comment=8291550
https://edstem.org/us/courses/43491/discussion/3527332?comment=8291550
https://edstem.org/us/courses/43491/discussion/3527332?comment=8291566
https://edstem.org/us/courses/43491/discussion/3527332?comment=8291566
https://edstem.org/us/courses/43491/discussion/3527332?comment=8291550
https://edstem.org/us/courses/43491/discussion/3527332?comment=8291672
https://edstem.org/us/courses/43491/discussion/3527332?comment=8291672
https://edstem.org/us/courses/43491/discussion/3527332?comment=8291566
https://edstem.org/us/courses/43491/discussion/3527332?comment=8292002
https://edstem.org/us/courses/43491/discussion/3527332?comment=8292002
https://edstem.org/us/courses/43491/discussion/3527332?comment=8291672

Anonymous Lapwing 1y #489dab

4 Replying to Justin Yokota

the problem before (which this problem builds on) states that we can treat -/+ 0 as
distinct values. So | thought that unsigned 16-bit integers cannot represent -0, so we
would have to subtract 1 from the total number of values that unsigned ints can
represent but floats cannot.

o -

Justin Yokota sTAFF 1y #489dac

4+ Replying to Anonymous Lapwing

Yeah, but there are a lot of numbers that unsigned 16-bit integers can't represent, that
our floating point can. 1.5, for instance. If we're subtracting -0, why aren't we
subtracting 1.5? Also there are a lot of numbers the unsigned integer can represent
that the float can't represent, like 65535. Why aren't we adding that?

Q) e

Anonymous Mole 1y #489cda = v Resolved
Spring 2021:

7. C Programming
(a) Consider the following structure definition. Assume we are using a 32-bit machine.

struct foo {
char a;
char *b;

}
And the following C code

void bar(struct foo *f){
int i;

for(1 =0; i <5, +i){
baz(f[i].Db);
}

iii. (4.0 pt) Translate the line baz(f[i].b) into RISC-V assembly. Assume that f is in S5 and i is in S6.
You should use only 4 instructions and you can only use a0 as a temporary. You may NOT use
mul, div, or rem!

sll a0 s6 3
add a0 a0 s5
Iw a0 4(a0)
jal baz

why are we doing sll a0 s6 3? Shouldn't it be slli a0 s6 1? Shouldn't we also do Iw a0 0(a0) instead
of Iw a0 4(a0)?

Su-Ann Ho sTAFF 1y #489cdd

#489bcb
QD e

Anonymous Chinchilla 1y #489cce ' v Resolved

FA21-MT-Q5.3

https://edstem.org/us/courses/43491/discussion/3527332?comment=8292063
https://edstem.org/us/courses/43491/discussion/3527332?comment=8292063
https://edstem.org/us/courses/43491/discussion/3527332?comment=8292002
https://edstem.org/us/courses/43491/discussion/3527332?comment=8292089
https://edstem.org/us/courses/43491/discussion/3527332?comment=8292089
https://edstem.org/us/courses/43491/discussion/3527332?comment=8292063
https://edstem.org/us/courses/43491/discussion/3527332?comment=8286190
https://edstem.org/us/courses/43491/discussion/3527332?comment=8286190
https://edstem.org/us/courses/43491/discussion/3527332?comment=8287372
https://edstem.org/us/courses/43491/discussion/3527332?comment=8287372
https://edstem.org/us/courses/43491/discussion/threads/489bcb
https://edstem.org/us/courses/43491/discussion/3527332?comment=8282363
https://edstem.org/us/courses/43491/discussion/3527332?comment=8282363

what's the common procedure or intuition for PC-relative addresses? does it always start from the
address of the function? what exactly is the PC?

Su-Ann Ho STAFF 1y #489cdc

The intuition for using the PC and PC-relative addressing is that your code—the actual RISC-
Vinstructions themselves—are stored in memory as 32-bit (4-byte) information. As
mentioned in lecture slides, "the PC (program counter) is a register internal to the processor
that holds the byte address of next instruction to be executed". This means that the Program
Counter is a register responsible for pointing to the memory address of the next
instruction. If we just want the instruction on the next line of our code to execute (meaning
we are not jumping or branching), the Program Counter simply increments by 4 bytes, since
instructions are stored consecutively.

When you do PC-relative addressing, you are computing the distance between the
instruction you are currently on, and the instruction you want to move to next, in terms of
bytes in memory. For example, to jump to a label that is 4 lines of instruction down instead
of the next instruction, you would want to add 16-bytes to the current address instead of 4-
bytes. Therefore, PC would contain (PC + 16) instead of (PC + 4) when we reach the jump
instruction.

@ ces

Anonymous Chinchilla 1y #489cec

that makes a lot of sense, thank you! whenever we have a j or b branch with a label, do
we always have to follow the procedure with offsetting like in this question? is the
general procedure just finding the function call line's offset to the label?

@ cee

Anonymous Hawk 1y #489caf = v Resolved

It seems that SP21-MT doesn't have a Q10A, Spring 2021 Midterm Q10A

Jero Wang sTarF 1y #489cbc

It should be the final, sorry about that! Should be fixed on the website now.

Anonymous Hawk 1y #489chd

Same for Q10B Spring 2021 Midterm Q10B
@ .oe

Jero Wang starF 1y #489cbf

<+ Replying to Anonymous Hawk
Fixed as well, thanks for the catch!
Q1

Anonymous Pony 1y #489bfc = « Resolved

FA21 MT Q3 - few clarifications/questions about this one:

why can'tido "*c == NULL" in the 1st blank?
where do we get "extra.d" from in the 5th blank? the question asked us to "set the contents

of the extra union in ret to be all zeros." i thought we have to somehow set char a[5],
uint16_t b, int ¢, and double d to be all zeros...

https://edstem.org/us/courses/43491/discussion/3527332?comment=8287316
https://edstem.org/us/courses/43491/discussion/3527332?comment=8287316
https://edstem.org/us/courses/43491/discussion/3527332?comment=8288717
https://edstem.org/us/courses/43491/discussion/3527332?comment=8288717
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273389
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273389
https://inst.eecs.berkeley.edu/~cs61c/sp21/pdfs/exams/Sp21_MT_Blank.pdf#page=28
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273416
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273416
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273504
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273504
https://inst.eecs.berkeley.edu/~cs61c/sp21/pdfs/exams/Sp21_MT_Blank.pdf#page=30
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273572
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273572
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273504
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273272
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273272

e for the 7th blank, is it valid to do: "(*f)(c->car)" instead of "f(c->car)"? will we ever need to de-
reference a given function to call it?

Solution:

cons *map(cons *c, (void *) (*f) (void *)) {
cons *ret;
if (¢ == NULL) return NULL;
ret = malloc(sizeof(cons));
ret->extra.d = 0;
car = f(c->car);
ret->cdr = map(c->cdr, f);
return ret;

e for Q3.2 - when did we learn about what UNIONS are? the solution key said that the
sizeof(union) is always size of largest element. where'd this come from?

Jero Wang sTAre 1y #489cae
e If c is NULL, then you're dereferencing a null pointer and would get a segfault.
e Members in unions share memory, only one of the members "exist" at any given time.
Since d is the largest member, by setting it to 0, you set all of the bits in the union to

0.
e That's fine. C will automatically dereference for you, though it won't hurt to
dereference manually.
e Unions were covered in homework 2.8 (though you probably needed to Google/look
up some stuff to learn more about it).
@ oee

Anonymous Pony 1y #489beb + Resolved

FA21 MT Q5.1 - why can't you do "mv t0 Password" on line 6 instead of using "la", since line 7 uses
|lmvll?

https://edstem.org/us/courses/43491/discussion/3527332?comment=8273346
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273346
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273162
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273162

Solution:
1: verifypassword:
2 addi sp, sp, -24 # Make space for a 20-byte buffer
3 sw ra 20(sp)
4: mv a0, sp
5: jal ra Get20chars
6: la t0 Password
7: mv tl sp
8: Loop:
9: 1b t2 0(t0)
10: 1b t3 0(tl)
11: bne t2, t3, Fail
12: beq t2, x0, Pass
13: addi t0 t0 1
14: addi t1 t1 1
15: j Loop
16: Pass:
17: 1li a0, 1
18: j End
19: Fail:
20: 1li a0, 0
21: End:
22: lw ra, 20(sp)
23: addi sp, sp, 24
24: jr ra

@ Andrew Liu sTAFF 1y #489bfb
#489bba
O e

Anonymous Mole 1y #489bdd =+ Resolved

iii. (1.0 pt) 64 in bias notation (with an added bias of -63)

Ob1111111

| am unsure how they got 64 with the biased notation.... | though we couldn't represent 64 in this
representation?

Kushal Kodnad 1y #489bef £ ENDORSED

there are 7 bits, so the max value that can be represented (before bias) is 2A7-1 = 127. we
want: exp + bias = 64

=> exp = 64 - bias =64 - (-63) = 127

127 in binary is 0b1111111 (7 bits)
Q) e

Anonymous Pony 1y #489bdb = v Resolved
SP21 Q7A

1. how do we get the size of (struct foo)?

https://edstem.org/us/courses/43491/discussion/3527332?comment=8273268
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273268
https://edstem.org/us/courses/43491/discussion/threads/489bba
https://edstem.org/us/courses/43491/discussion/3527332?comment=8272822
https://edstem.org/us/courses/43491/discussion/3527332?comment=8272822
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273263
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273263
https://edstem.org/us/courses/43491/discussion/3527332?comment=8272794
https://edstem.org/us/courses/43491/discussion/3527332?comment=8272794

2. this was my understanding, but i think i'm wrong. "char a" is a character (1 byte), but "char *b"
is a pointer to a string sequence, which has 4 bytes? honestly not really sure how to interpret the

"struct foo" definition here.

3. why is sizeof(f) equal to 4? isn't f a pointer to a "struct foo" object?

7. C Programming

(a) Consider the following structure definition. Assume we are using a 32-bit machine.

struct foo {
char a;
char *b;

}
And the following C code
void bar(struct foo *f){

int i;

for(i = 0; i < 5, ++i){
baz (f[i] .b);
}
X
i. (2.0 pt) What is sizeof (struct foo)?

8

ii. (2.0 pt) What is sizeof (£)?

4

iii. (4.0 pt) Translate the line baz(f[i].b) into RISC-V assembly. Assume that fis in S5 and i is in S6.
You should use only 4 instructions and you can only use a0 as a temporary. You may NOT use

mul, div, or rem!

sll a0 s6 3
add a0 a0 s5
lw a0 4(a0)
jal baz

Jero Wang sTarr 1y #489cac

In a 32-bit system, char s are 1 byte, and char = s (or all pointers) are 4 bytes. To fulfill the
alignment requirements, each member must have an offset (within the struct) that's a
multiple of its size. Therefore, char a is at offset 0, and char xb is at offset 4 (offsets 1-3
are padding). char xb would occupy bytes 4 through 7, so the struct takes up 8 bytes.

Your interpretation is correct! | think you might just be missing the padding.

Yes, f is a pointerto struct foo.However, pointers are just really memory addresses, so it
doesn't matter what type it points to, it always has the same size. For example, char * and
int64_t * would be both 4 bytes in a 32-bit system.

1

Anonymous Pony 1y #489cad
gotcha! those all make sense, thanks!!

https://edstem.org/us/courses/43491/discussion/3527332?comment=8273313
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273313
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273342
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273342

Anonymous Chinchilla 1y #489bce ' v Resolved
FA21-MT-Q2

can someone clarify what goes in static data? i thought *str was a local variable because it's
defined in a function. i understand that *str is an address since it's a pointer, but i'm not sure
what it means for it to be in static data or what's defined as static data

D e

Jero Wang sTarF 1y #489cab

String literals and variables defined outside of functions are in static memory.

xstr's value is wherever str points to, which could be any segment of memory. If str
points to a string literal, then *str's value would be stored in static.
\2RTE

Cecilia Aiko 1y #489bcb v Resolved

SP21-Midterm-Q7a
Can anyone explain why we need to use the first line (sll) and why we use Iw a0 4(a0) instead of
0(a0) ? Thank you!

iii. (4.0 pt) Translate the line baz(f[i].b) into RISC-V assembly. Assume that f is in S5 and i is in S6.
You should use only 4 instructions and you can only use a0 as a temporary. You may NOT use
mul, div, or rem!

sll a0 s6 3
add a0 a0 sb5
lw a0 4(a0)
jal baz

Anonymous Weasel 1y #489bcf £ ENDORSED

I'm not sure if I'm right but from what | understand
size of foo=8

fis a pointer to foo

so at f, we have foo1

at f+8, we have foo2

we are looking for fooli]

which is f+i*8

to multiply by 8, we can sll by 3 (since 2A3 = 8)

adding this to s5, we get f[i]

now we are at f[i] and we want f[1].b

char a occupies first 4 bytes of foo, next 4 are of char*b

since we want b, we go to 4(a0)

https://edstem.org/us/courses/43491/discussion/3527332?comment=8272633
https://edstem.org/us/courses/43491/discussion/3527332?comment=8272633
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273305
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273305
https://edstem.org/us/courses/43491/discussion/3527332?comment=8272294
https://edstem.org/us/courses/43491/discussion/3527332?comment=8272294
https://edstem.org/us/courses/43491/discussion/3527332?comment=8272733
https://edstem.org/us/courses/43491/discussion/3527332?comment=8272733

Anonymous Gorilla 1y #489dbb

Isn't f a pointer to one foo ? Since sizeof(foo) = 8, when adding 8 wouldn't we get an
error?

Kushal Kodnad 1y #489bda & ENDORSED

for the first part of your question, i think it's because from part (i), we know that sizeof struct
foo is 8. so since i is an integer representing the index of the foo that we're looking for, doing
"sll a0 s6 3" basically multiplies s6 by 243 = 8, so it's basically a byte shift.

then for the 2nd part, i think 0(a0) gives you "char a" while 4(a0) gives you "char *b" from the
struct definition.

hope this helps! if i missed anything, please Imk!
1

Anonymous Mallard 1y #489bbe = v Resolved
Q2.5 (1 point) Returning the string.
M return stri; M return str3;

Oreturn str2; [0 None of the above

Solution: return str3;

strl is a pointer to static memory, which doesn’t change throughout program execution, so
return strl; is safe.

str2 is a pointer to the stack. When the function returns, the string on the stack is erased,
which causes return str2; to have undefined behavior.

str3 is a pointer to the heap. Heap memory stays allocated until the programmer calls free.
Since this function never calls free, the string on the heap will stay allocated, so return
str3; is safe.

Grading: Each answer choice was graded independently. 1/3 of a point for correctly selecting
strl, 1/3 of a point for correctly not selecting str2, and 1/3 of a point for correctly selecting
str3. Selecting "None of the above" is worth 1/3 points (for correctly not selecting str2).

In FA21-MT-Q2.5, Does returning a "string" literally mean any string? | didn't choose these because
| thought return str1 or return str3 would return the address, not "Hello World" string itself. So
are return str1 and return str3 both answers because the address itself is also a "string"?

Jero Wang sTare 1y #489caa

Strings are really just char xs, which...are pretty much just addresses if you peel away all of
the abstractions. | think the prompt here might be a bit confusing, but it's trying to ask which
of those lines would cause defined behavior, rather than what actually returns a string
(though both of the correct answers do return strings).

Anonymous Weasel 1y #489bbc = v Resolved
SP22-MT-Q2

https://edstem.org/us/courses/43491/discussion/3527332?comment=8292866
https://edstem.org/us/courses/43491/discussion/3527332?comment=8292866
https://edstem.org/us/courses/43491/discussion/3527332?comment=8272779
https://edstem.org/us/courses/43491/discussion/3527332?comment=8272779
https://edstem.org/us/courses/43491/discussion/3527332?comment=8271689
https://edstem.org/us/courses/43491/discussion/3527332?comment=8271689
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273292
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273292
https://edstem.org/us/courses/43491/discussion/3527332?comment=8271095
https://edstem.org/us/courses/43491/discussion/3527332?comment=8271095

what are interpreters?

2. (5.0 points) CALL
(a) (2.0 points) General
i. (1.0 pt) Which of the following statements must be true about compilers?
[| Compiled code generally is only able to run on one ISA.
[| Compilers produce larger code than interpreters but do it faster.

[0 The code produced is always more efficient and higher performance than that produced by
interpreters.

[J There is only one compiler per language.

[J Compilers are always more difficult to write than interpreters.

[0 The easiest step of CALL is compilation; the harder parts are assembling, linking, and loading.
TBD

2B . What are translators?

Jero Wang starF 1y #489bff
Please post in the 2022 thread!

Anonymous Manatee 1y #489bbb =+ Resolved
SP21-MT-Q3

3. SDS
For the following question, do NOT include units in your answer!

In the following circuit, the registers have a clk-to-q delay of 6ns and setup times of 5ns. NOT gates have a delay
of 3ns, AND and OR gates have a delay of 7ns, and the “Black Box” logic component has a delay of 9ns.

Black Box Logic

[l
L
oTah A
b = 0
T
> [
C
D5Q
|—>- D
[}
Circuit

(a) (2.5 pt) What is the maximum allowable hold time of the registers?

28

The shortest path through the circuit to a register clearly follows the path from A to O and includes:
clk-to-q delay, two NOT gates, one OR gate, and the “Black Box.” Maximum hold time =6 + 23 + 7 + 9
= 28ns

what is O and why is the shortest path from A to O? isn't the shortest combinational path basically
just A back to A? the answer does make sense, I'm just confused on what O is specifically.

https://edstem.org/us/courses/43491/discussion/3527332?comment=8273288
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273288
https://edstem.org/us/courses/43491/discussion/3527332?comment=8270743
https://edstem.org/us/courses/43491/discussion/3527332?comment=8270743

Anonymous Pony 1y #489bdc

adding onto this question, why does the path from A to O go through the Black Box Logic?

Anonymous Manatee 1y #489bdf

my best guess was that the shortest path is from A --> A and to get there you would go

past O and through the Black Box Logic then back to A. i'm just confused as to what O is
O .

Jero Wang sTarF 1y #489bfe

O refers to the wire connecting the output of the NOT gate (that it's somewhat next to)
to the input of the black box. The shortest path always starts at a register and ends at a
register. In this case, it starts with the clk-to-q of the top register, then goes through the
NOT/OR/NOT gates, then through the black box, then back to any of the three registers.
D1

‘o Ali Khani 1y #489bae v Resolved

SP21-Final-Q6A: For part (i), in the struct foo we have the following contents:

char aj;
uintl6é_t by
char *c;

struct foo *d;

a should be 1 byte since it's a char,
b is 2 unsigned bytes,
and xc and xd should be 4 bytes each since they're pointers.

| don't understand how the answer isn't a total of 11 bytes for the sizeof(struct foo) —in
particular, | don't get where the last 1 byte comes in from. What's the right approach to this
question?

Jero Wang starF 1y #489bfd

Alignment causes the extra byte to be added. In general, when considering field alignment,
the main rule is that each member's offset must be a multiple of its size. In this case, char a
has a size of 1, and its offset is 0, so that works. Then, uint16_t b has size 2, so it must be
at an offset that's a multiple of 2. Therefore, we need to insert a byte of padding (at offset 1),
and uintl6_t b would start at offset 2.

D1

Anonymous Barracuda 1y #489bad = v Resolved
FA21-Final-Q6.2: im gettting to ~y+(y*~z) but the sol has ~(y&z)
can someone explain how | would get to that solution from the expression | have? also is my

answer a valid answer?

Jero Wang sTarF 1y #489bfa

You can simplify this as follows:

~y + (y x ~z)
= (~y +y) * (~y | ~z) (distributive property)

https://edstem.org/us/courses/43491/discussion/3527332?comment=8272819
https://edstem.org/us/courses/43491/discussion/3527332?comment=8272819
https://edstem.org/us/courses/43491/discussion/3527332?comment=8272958
https://edstem.org/us/courses/43491/discussion/3527332?comment=8272958
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273285
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273285
https://edstem.org/us/courses/43491/discussion/3527332?comment=8267800
https://edstem.org/us/courses/43491/discussion/3527332?comment=8267800
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273279
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273279
https://edstem.org/us/courses/43491/discussion/3527332?comment=8267392
https://edstem.org/us/courses/43491/discussion/3527332?comment=8267392
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273267
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273267

=1x% (~y | ~2) (complements)
=~y | ~z (identity)

~(y * z) (DeMorgan's)

Your solution would receive partial credit, as it uses 4 operators where the staff solution uses
2 operators.
O

Anonymous Crow 1y #489bac = v Resolved

Exam generated for cs61c@berkeley.edu 12

3. FSM

‘We want to construct a finite-state machine that determines if adding together two binary unsigned numbers
causes an overflow. The machine consumes two bit strings of equal length, starting from their least significant
bits. After consuming each pair of bits from the two inputs, the machine outputs 1 if addition of the two strings
(as seen so far) would cause an overflow, or a 0 otherwise.

For example, if the machine consumes the two bit strings 0111 and 0100, the sequence of output values will be
0,0,1,0.

A diagram for this finite-state machine is shown below. We have given the states generic placeholder names.
Transition labels use the notation x,y/o, where x is a bit read from the first input string, y is a bit read from
the second input string, and o is the output. To simplify, you are allowed to assign multiple labels to the same
arrow in the diagram - each label corresponds to a different transition with the same start and end states.

4 2

start —

3

State Machine

(a) i. (1.0 pt) Which of the following labels (each corresponding to one transition) should be assigned to
Arrow 1 in the diagram?

O 1,1/0
O o,0/0
O o,1/0
O 1,0/0
O 1,0/1
O o,1/1
O o,0/1
Hi,i/1

can someone explain how to approach this question?
)

Jero Wang sTafFF 1y #489bee

First, consider when the sum of two strings would overflow. It only overflows if both inputs
are 1 ORif one of the inputs is 1 and the "carry" was previously 1. We need to save one value

https://edstem.org/us/courses/43491/discussion/3527332?comment=8267330
https://edstem.org/us/courses/43491/discussion/3527332?comment=8267330
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273253
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273253

between iterations, which is if we're carrying a value or not. We can use the current state to
represent this: let A be if there is no carry from previous calculations, and B if there is a carry
(since we start at A, and we start off without a carry).

Then, to look at each of the transitions:

e Arrow 1 goes from A to B, which is going from no carry to carry. When would this
happen? It should only happen if both inputs are 1 (e.g. 1 + 1 = 0 with a carry of 1). In
this case, since we have a carry of 1, it would overflow (say we have 1-bit binary
numbers, Ob1 + 0b1 = 0b0, overflows)

o We can extrapolate from this that whenever there is a carry after the current
computation, the output of the FSM should be 1, since there is an overflow.

e Arrow 2 is going from B to B, which is going from carry to carry. The cases that would
result in this would be

o 1,1(1+1+carried 1 =1 with carry of 1)

1,0 (1 + 0+ carried 1 = 0 with carry of 1)

0,1 (0 + 1 + carried 1 = 0 with carry of 1)

All three cases have a carry of 1, therefore, the output of the FSM would be all 1

e Arrow 3 goes from a carry to no carry, which means that the only case is both inputs
are O (if either input is 1, you have to add it to the previously carried value of 1, which
gives you another value to carry). As you don't have a carry after the current
computation, you aren't overflowing, and the output is 0.

e Finally, Arrow 4 would have the rest of the possible transitions, going from no carry to
no carry, and output would be 0 since you're not carrying after the current
computation.

O O O

Anonymous Pony 1y #489afd =+ Resolved

Sp21 MT Q5 - is this in scope?

Isita Talukdar 1y #489bab £ ENDORSED
| don't think so, Single_Cycle-Datapath is not in scope and niether is Pipelining
D1

Anonymous Kangaroo 1y #489afc = v Resolved

FA21-MIDTERM-Q5:

| had a different solution that | wanted to run by staff.

In my solution, everything except for lines 12, and 15 are different.
Inline 12, | instead do: li t4 "\0'

Inline 15, | instead do: bne t3 t4 Loop

Would this be an acceptable solution?

My reasoning behind this solution is the following:

There can only be 3 cases: either the input is same size as password, the input is longer than
password or the input is shorter than password.

https://edstem.org/us/courses/43491/discussion/3527332?comment=8265170
https://edstem.org/us/courses/43491/discussion/3527332?comment=8265170
https://edstem.org/us/courses/43491/discussion/3527332?comment=8265509
https://edstem.org/us/courses/43491/discussion/3527332?comment=8265509
https://edstem.org/us/courses/43491/discussion/3527332?comment=8263767
https://edstem.org/us/courses/43491/discussion/3527332?comment=8263767

1) If same size, once we're at the last iteration, and we compare t3 to t4, we'll realize that they are
equal (both are null terminator), so we will continue to the pass Branch (this is correct as we have
correctly finished checking the input against the password).

2) If input is longer than password, well it doesn't matter because we'll reach the case where t2 =
null terminator, t3 = some character AND hence line 11 will become true and we'll jump to the Fail
branch which is correct.

3) If input is shorter than password, well we'll reach the case where t2 = some character, t3 = null
terminator AND hence line 11 will also become true and we'll jump to the Fail branch which is
correct.

In all cases, this logic still holds, would this be an accepted solution?

fa21-midterm-sols.pdf - 131% + & <)

Solution:

: verifypassword:

: addi sp, sp, -24 # Make space for a 20-byte buffer
sw ra 20(sp)
mv a0, sp
jal ra Get20chars
la t0 Password

H mv tl sp

: Loop:
1b t2 0(t0)
1b t3 0(tl)
bne t2, t3, Fail
beq t2, x0, Pass
addi t0 t0 1
addi t1 t1 1
j Loop

: Pass:
1i a0, 1
j End

: Fail:
1li a0, 0

: End:
1w ra, 20(sp)
addi sp, sp, 24
jr ra

Line 3: First, we note that Line 2 allocated 24 bytes of space on the stack. Line 3 is storing a 4-byte
register value to the stack space that was just allocated. This looks a lot like the function prologues

thnt wrndern cnnm hafavn in meninate and Taha!

Jero Wang sTarF 1y #489bed

Your logic seems correct, | think this would be a valid alternate solution.
Y

Anonymous Grasshopper 1y #489afb = v Resolved
Fa21-Midterm-Q5.1/5.3

For 5.1, How can we use labels to store strings? An example would be helpful.

For 5.3, how do we know that jal is an | type? The reference card says it's a] type, which is
confusing
I\

Jero Wang star 1y #489bec

5.1: You can use assembler directives (such as this from project 2).

5.3: Yes, that's a typo, it should be] type, sorry.
Y

Anonymous Grasshopper 1y #489aee v Resolved

Fa21-Midterm-Q3.1

https://edstem.org/us/courses/43491/discussion/3527332?comment=8273241
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273241
https://edstem.org/us/courses/43491/discussion/3527332?comment=8263625
https://edstem.org/us/courses/43491/discussion/3527332?comment=8263625
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273227
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273227
https://github.com/61c-teach/fa23-proj2-starter/blob/711e84bb651c11ab244841ca2dd74beae60cd6c4/tests/chain-1/chain.s#L18
https://edstem.org/us/courses/43491/discussion/3527332?comment=8261583
https://edstem.org/us/courses/43491/discussion/3527332?comment=8261583

Shouldn't we be writing ret->car instead of just car?
2 e

Anonymous Stork 1y #489aef

I had this same question, how can you access car if it is a variable of the struct?

Eddy Byun staFF 1y #489afa
Yea, sorry for the confusion! It's a typo #489ce
2

Anonymous Stork 1y #489aed = v Resolved

FA21-Midterm-Q2.1: Why is *str1 located in static memory? | thought since it is a variable defined
inside a function it is a local variable and all local variables are stored on the stack. How do | know
when variables inside functions are static memory?

Q2 Now, Where Did I Put Those Strings? (10 points)
Consider the following code:

char *foo() {
char *strl = "Hello World";
char str2[] = "Hello World";
char *str3 = malloc(sizeof(char) * X);
strcpy(str3, "Hello World");
// INSERT CODE FROM PARTS 5-7
1

The char *strcpy(char *dest, char *src) copies the string pointed to by src, including the
terminating null byte ('\0"), to the buffer pointed to by dest. The strings may not overlap, and the
destination string dest must be large enough to receive the copy.

Q2.1 (1 point) Where is *str1l located in memory?

Q code @ static Q heap O stack

Isita Talukdar 1y #489aff £ ENDORSED

str1 is a preallocated variable since it's a char* string literal. It's immutable, unlike str2[]
which is a mutable char array stored in the stack

Anonymous Mallard 1y #489bbd

| thought char *string and char string[] were nearly the same thing, as shown in Lec 4
Slide 28. But why is the first stored in static and the second stored in a stack?

Isita Talukdar 1y #489bea
<+ Replying to Anonymous Mallard
they're similar but again, different.

char *string = "potato" is an immutable string literal, just like in Python and other
languages, you cannot change individual letters in a string

but char string[] makes it a mutable array of characters that you can change

https://edstem.org/us/courses/43491/discussion/3527332?comment=8261827
https://edstem.org/us/courses/43491/discussion/3527332?comment=8261827
https://edstem.org/us/courses/43491/discussion/3527332?comment=8262964
https://edstem.org/us/courses/43491/discussion/3527332?comment=8262964
https://edstem.org/us/courses/43491/discussion/3527332?comment=8229592
https://edstem.org/us/courses/43491/discussion/3527332?comment=8260784
https://edstem.org/us/courses/43491/discussion/3527332?comment=8260784
https://edstem.org/us/courses/43491/discussion/3527332?comment=8265343
https://edstem.org/us/courses/43491/discussion/3527332?comment=8265343
https://edstem.org/us/courses/43491/discussion/3527332?comment=8271422
https://edstem.org/us/courses/43491/discussion/3527332?comment=8271422
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273128
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273128
https://edstem.org/us/courses/43491/discussion/3527332?comment=8271422

because of that, it makes sense that the first is stored in static read only segment, as we
cannot change it
)

Anonymous Gorilla 1y #489ccf
“ Replying to Isita Talukdar

would char *string be a pointer to an immutable string literal or the string literal itself
or first char of the string literal ?
I\

Anonymous Kangaroo 1y #489aec = v Resolved

SP22-MT-Q2A

Can anyone explain why this is the solution and why the other options are wrong?

= Sp21_MT_Solutions.pdf 5 [26 - 100% + = QD

Exam generated for cs61cOberkeley. edu

2. (5.0 points) CALL
(a) (2.0 points) General
i. (1.0 pt) Which of the following statements must be true about compilers?
B Compiled code generally is only able to run on one ISA.
B Compilers produce larger code than interpreters but do it faster.

O The code produced is always more efficient and higher performance than that produced by
interpreters.

O There is only one compiler per language.

O Compilers are always more difficult to write than interpreters.

O The casiest step of CALL is compilation; the harder parts are assembling, linking, and loading.
TBD

Isita Talukdar 1y #489baa £2 ENDORSED
for the first uncolored option, technically in the slides it says "almost always" not always
when it talks about that. I'm not sure why, but maybe it's because technically you can

interpret in RISC-V and | imagine that's more/equally efficient than compiling C++ code to
RISC-V?

for the second, that's untrue because there are lots of different lower level languages like
x86(?) so there's certainly more than one compressor

I'm not sure exactly why for the third one, it just seems a little too much of an absolute
statement, | hope a TA answers this one XD

The last one is from the slides, Compiler is the hardest and most complex out of the steps in
CALL. I think it's because going from a high level language to a very specific and limited
assembly language takes a lot of thought (you have to replace simple instructions with so
many lines). Eddy explained this also in thread #489add

im no TA but at least that's what | thought

https://edstem.org/us/courses/43491/discussion/3527332?comment=8284715
https://edstem.org/us/courses/43491/discussion/3527332?comment=8284715
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273128
https://edstem.org/us/courses/43491/discussion/3527332?comment=8260087
https://edstem.org/us/courses/43491/discussion/3527332?comment=8260087
https://edstem.org/us/courses/43491/discussion/3527332?comment=8265487
https://edstem.org/us/courses/43491/discussion/3527332?comment=8265487
https://edstem.org/us/courses/43491/discussion/3527332?comment=8257082

QD e

@ Andrew Liu sTarr 1y #489baf
Great answer from Isita! Let me fill in some more details.

C) Always is a super strong term, and efficient and higher performance aren't always
guaranteed because of the languages. Some high performance interpreted languages take
advantage of things like lazy computation and other optimizations to be quite efficient.

D) Isita is spot on! Even for C, there are lots of compilers, like clang, gcc, and many many
more: https://en.wikipedia.org/wiki/List_of_compilers#C_compilers

E) Once again, always is a super strong term here. You could imagine a super simple
compiler for a language that only has say, 1 instruction (it would be a pretty useless or
obtuse language, but as a thought experiment it's a good model).

F) Just as Isita said.
1

Anonymous Red deer 1y #489adf =+ Resolved

FA-Midterm-Q3, Are unions in C in scope?
Q) e

Eddy Byun sTAFF 1y #489aea

Yes, unions are in scope

Anonymous Giraffe 1y #489acf =+ Resolved
FA19-Midterm-Q4b

Why do we move the PC forward by 8 instructions? | thought we only moved it till we reached the
line with the label so that would be 7 instructions. And why do we multiply by 4? | saw earlier
calculations where immediate is just the value of the offset, not the number of bytes we move
forward by.

Now assume all blanks above contain a single instruction (no more, no less).
b) The address of reverse is 8x12345678.

What is the hex value for the machine code of beq x0, t@, returnnode? Ox02500063
c) The user adds a library and this time the address of reverse is 9x76543210.

What is the hex value for the machine code of beq xe, to, returnnode? 0x02500063

beq x0, t@, returnnode moves the PC (program counter) forward by 8 instructions, each of which is 1
+ word or 4 bytes. This means the immediate = 8 * 4 = 32.

In binary, we represent 32 as 0b100000. However, since we know branch/jump immediates are always even
» numbers, we don’t store bit 0. !

Eddy Byun starF 1y #489ada

Can you repost this question in this megathread: #4907

Anonymous Giraffe 1y #489adb
yes, sorry about that.

https://edstem.org/us/courses/43491/discussion/3527332?comment=8268369
https://edstem.org/us/courses/43491/discussion/3527332?comment=8268369
https://en.wikipedia.org/wiki/List_of_compilers#C_compilers
https://edstem.org/us/courses/43491/discussion/3527332?comment=8257497
https://edstem.org/us/courses/43491/discussion/3527332?comment=8257497
https://edstem.org/us/courses/43491/discussion/3527332?comment=8257575
https://edstem.org/us/courses/43491/discussion/3527332?comment=8257575
https://edstem.org/us/courses/43491/discussion/3527332?comment=8256852
https://edstem.org/us/courses/43491/discussion/3527332?comment=8256852
https://edstem.org/us/courses/43491/discussion/3527332?comment=8256935
https://edstem.org/us/courses/43491/discussion/3527332?comment=8256935
https://edstem.org/us/courses/43491/discussion/threads/490
https://edstem.org/us/courses/43491/discussion/3527332?comment=8257023
https://edstem.org/us/courses/43491/discussion/3527332?comment=8257023

QD e

Anonymous Grasshopper 1y #489acd =+ Resolved

FA21-Midterm-Q1

Can someone explain why the compiler is more complex than the assembler. Doesn't the
assembler stage involve more steps such as making the relocation table and symbol table,
whereas the compiler simply needs to convert C code into RISC-V?

Q1.2 (1.25 points) True or False: The assembler is the step with the highest computational complexity
among CALL.

O True @ False

Solution: False. The compiler is more complex than the assembler.

Grading: 1.25 points for False.

Eddy Byun starF 1y #489add

The compiler has to do a lot of things. One thing it does is optimize your code. For example,
if there is some piece of code that is not needed, the compiler might not compile that
section. The compiler may also reorder your code. The compiler also does error checking.
From lab or project, you may have seen an error when you assign something of one type to
something of another type, and this job is up to the compiler. All of these jobs are up to the
compiler so converting C code to assembly is takes up a lot of computation and complexity.

D1

Anonymous Grasshopper 1y #489aeb
Thank you, this makes a lot of sense!
@ cee

Anonymous Spider 1y #489bde

Would we be expected to know this for the exam? Looking at the slides, the Assembler
is described with much more detail and it seems kind of arbitrary to compare it with
another part of the CALL process in terms of computational complexity given what we
were taught.

@ eee

Jero Wang starF 1y #489ccb
““ Replying to Anonymous Spider
#616

We'll reply in this post once we have an official answer.
@ eee

Theo Putterman 1y #489acb = v Resolved
FA21-MT-Q5.1 Line 6

Why is mv not a valid option here? It says that password is a pointer to a string in static memory,
so wouldn't password be a 4-byte integer (assuming 32 bit system), that we can just move into t0?
O

https://edstem.org/us/courses/43491/discussion/3527332?comment=8254739
https://edstem.org/us/courses/43491/discussion/3527332?comment=8254739
https://edstem.org/us/courses/43491/discussion/3527332?comment=8257082
https://edstem.org/us/courses/43491/discussion/3527332?comment=8257082
https://edstem.org/us/courses/43491/discussion/3527332?comment=8259550
https://edstem.org/us/courses/43491/discussion/3527332?comment=8259550
https://edstem.org/us/courses/43491/discussion/3527332?comment=8272905
https://edstem.org/us/courses/43491/discussion/3527332?comment=8272905
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273631
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273631
https://edstem.org/us/courses/43491/discussion/3527332?comment=8272905
https://edstem.org/us/courses/43491/discussion/threads/616
https://edstem.org/us/courses/43491/discussion/3527332?comment=8253885
https://edstem.org/us/courses/43491/discussion/3527332?comment=8253885

®

Andrew Liu sTarF 1y #489bba

to the following labels defined externally

Password is a label, not a pointer directly.

Anonymous Grasshopper 1y #489aca @ v Resolved

SP21-MT-Q7-a.iii

For the coding portion, is it wrong to use jalr or jal ra instead of just jal?

Eddy Byun staFF 1y #489adc

jal baz and jal ra baz arethe same. You can'tuse jalr in this case because jalr is
going to take the value inside of rs1, add the offset, and then jump to that instruction. We
don't know what instruction baz is at.

Anonymous Crow 1y #489bbf

for this question why do we do Sll a0 s6 3?
@ eee

Jero Wang sTarF 1y #489cca
4+ Replying to Anonymous Crow
It should be s114, but the purpose of that instruction is to get the offset in bytes from

the index (we multiply by 8/shift left by 3 because each struct is 8 bytes).
\2TH

Anonymous Crow 1y #489ccd

4+ Replying to Jero Wang

but s6 contains i and i is an int. so shouldn't we do 4 bytes?
@ cee

https://edstem.org/us/courses/43491/discussion/3527332?comment=8268408
https://edstem.org/us/courses/43491/discussion/3527332?comment=8268408
https://edstem.org/us/courses/43491/discussion/3527332?comment=8253791
https://edstem.org/us/courses/43491/discussion/3527332?comment=8253791
https://edstem.org/us/courses/43491/discussion/3527332?comment=8257043
https://edstem.org/us/courses/43491/discussion/3527332?comment=8257043
https://edstem.org/us/courses/43491/discussion/3527332?comment=8272018
https://edstem.org/us/courses/43491/discussion/3527332?comment=8272018
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273621
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273621
https://edstem.org/us/courses/43491/discussion/3527332?comment=8272018
https://edstem.org/us/courses/43491/discussion/3527332?comment=8279921
https://edstem.org/us/courses/43491/discussion/3527332?comment=8279921
https://edstem.org/us/courses/43491/discussion/3527332?comment=8273621

Anonymous Bison 1y #489aae @ v Resolved

FA21-MT-Q4.5

| understand that we are looking for a denorm (exponent of zero, significand of nonzero). Why
isn't the answer

98 . 9—63 _ 9-T71

[(130 Cse1cFAZ3-EdDisc. X | @ ta2r CS61CFl X | G 26~ Google Search x|+ v

C & insteecs.berkeley.edu/~cs61

= faz-midterm-sols.pdf

ey are not part of the significand. Thus all we can do to maximize this number is adjust the
significand to be as large as possible. The largest significand would be all 1s, as shown above.

In other words, the value we want is 0b1.11111111 x2'5, which is equal to 216 — 27 = 65408.

Grading: Half credit was awarded for 2! — 1 and 2! — 25,

Q4.5 (4 points) What is the smallest positive number representable by this floating point system that
isn’t representable by the unsigned 16-bit integer?

Solution: 2-7

Floating point numbers can represent fractional numbers between 0 and 1, but integers cannot
represent fractional numbers between 0 and 1. Thus we are looking for the smallest positive
number representable by the floating point number.

The smallest positive numbers representable in floating point are the denorms. The smallest
denorm can be obtained by using a denorm exponent of 0 and the smallest possible mantissa.
This gives us 270,

Grading: Half credit was awarded for 27",

Eddy Byun sTAFF 1y #489abd

Recall that for denorm this is the following equation:

+/- 0.Mantissa, * 20ias +1

In this case, we would have 0.00000001 * 2703+ 1 =1 %284 962_>70
@ eoe

Anonymous Bison 1y #489%9aad = v/ Resolved

FA21-MT-Q4.4

I'm not really understanding anything after the first paragraph. Can someone explain why we
need an exponent of 15 to represent 16 bits?

[(136 Cse1cFAZ3 - EdDisc. X | @ fozr-mic CSEICF X | G 26~ Google Search x| + v

C @ insteecs berkeley.edu/~cs61

= fazi-midterm-sols.pdf

Q4.4 (4 points) Out of all numbers representable by this floating point system, what is the largest
number that can also be represented as an unsigned 16-bit integer?

Solution: 2!° — 27 = 65408

The unsigned number can represent any nonnegative integer less than 2'%, so we’re looking
for the largest integer less than 2 that can be represented by the floating point number. To
do this, we can try to create a 16-bit integer with the floating point number, and how we can
maximize the number created through this process.

The significand has 8 bits plus the implicit 1 (e.g. 1.1111 1111), so to represent a 16-bit
integer, we would need an exponent of 15 to create 1 1111 1111 0000 000.

Note that the lower 7 bits of any number created in this process will always be 0, because
they are not part of the significand. Thus all we can do to maximize this number is adjust the
significand to be as large as possible. The largest significand would be all 1s, as shown above.

In other words, the value we want is 0b1.11111111 x 2'%, which is equal to 2!6 — 27 = 65408.

Grading: Half credit was awarded for 2! — 1 and 2! — 25,

Q4.5 (4 points) What is the smallest positive number representable by this floating point system that
isn’t representable by the unsigned 16-bit integer?

Eddy Byun starF 1y #489abe
We want to create a 16-bit integer. Currently we have 1.1111 1111. To create a 16-bit integer,

we need to multiply this by 2" to get Ob 1111 1111 1000 0000
Q) e

https://edstem.org/us/courses/43491/discussion/3527332?comment=8251653
https://edstem.org/us/courses/43491/discussion/3527332?comment=8251653
https://edstem.org/us/courses/43491/discussion/3527332?comment=8251945
https://edstem.org/us/courses/43491/discussion/3527332?comment=8251945
https://edstem.org/us/courses/43491/discussion/3527332?comment=8251630
https://edstem.org/us/courses/43491/discussion/3527332?comment=8251630
https://edstem.org/us/courses/43491/discussion/3527332?comment=8252272
https://edstem.org/us/courses/43491/discussion/3527332?comment=8252272

Anonymous Finch 1y #489aab + Resolved
SP21-MT-Q4a.

Could someone please explain the following code to me?

stringtriple:

stringtriple:

mv t2 al
Loop:

lbu t0 0(a0)
beq t0O x0 End
slli t1 t0 8
add t1 t1 tO
sh t1 0(al)
sb t0 2(al)
addi a0 a0 1
addi al al 3
j Loop

sb x0 0(al)
mv a0 t2
jr ra

The part I'm unsure about is everything slli to j Loop. It seems like it's multiplying the character
and saving parts of that multiplied character? How | did it was to read the character, write it once,
move the pointer, write, move, write, move, and then jump. Would that work? Thanks!

\2RTE

Eddy Byun sTarF 1y #489ade

I think the way you do it works as well. Here's how this solution works: let's say you load in
the character 0x44 when you do 1bu t0@ 0(a0) . This solution takes the character in to,
which is going to be 0x00000044, shift it left by 8 (which is shifting it by 1 byte) to get
0x00004400. It then adds 0x00000044 to 0x00004400, which results in 0x00004444. The slli
and add essentially stores two instances of the character inside the t1 register. Note then
we store a half word into 0(a1), so we store 0x4444 into a1 and then we store a byte from t0
(recall tO is 0x00000044 so we store 0x44) into 2(a1), which is going to store 3 instances of
0x44 at the pointer al is pointing to.

D1

Anonymous Swallow 1y #489aaa = v/ Resolved

SP21-MT-Q6a. I've been staring at this one for a long time, | don't quite get how to approach this
problem. | also don't really know how to read the FSM diagram in this case i(.

https://edstem.org/us/courses/43491/discussion/3527332?comment=8250820
https://edstem.org/us/courses/43491/discussion/3527332?comment=8250820
https://edstem.org/us/courses/43491/discussion/3527332?comment=8257151
https://edstem.org/us/courses/43491/discussion/3527332?comment=8257151
https://edstem.org/us/courses/43491/discussion/3527332?comment=8249905
https://edstem.org/us/courses/43491/discussion/3527332?comment=8249905

start —(ReadKey ReadValue

State Machine

Exam generated for cs61c@berkeley.edu 20

(a) (1.0 pt) Specify the input and action for Transition 1:
O whitespace/append
O vhitespace/append,storeValue
[) whitespace/consume

O whitespace/consume,storeValue

Isita Talukdar 1y #489%afe £ ENDORSED
For this question, you can think of that you only have two possible states, either you are

reading a key or reading a value. Transitions 3 and 5 tell you that you need to switch
between them, but 1, 4, and 2 tell us you need to be in the same state again.

Looking at Transition 1, we see that all the answer choices have to do with what happens
when we get a whitespace while we are reading a key. In the question spec, we know that
values have only non-whitespace characters, so we eliminate the first two options, since we
don't append a whitespace.

Between the second two, you either consume the whitespace(meaning you skip the
whitespace and go to read the next character), or you consume it and store the value. But
storing the value should only happen if we know the value is done.

In the question, we know that key value pairs are stored on different lines, so it looks like:

key value"\n'. Only when we see a "\n' should we say the value is done and store it, so that's
why it's not the last option.

In summary, transition 1 tells us, if we see a whitespace while reading the value, we should
ignore it, not put it in our value, and go to the next character

D2

Anonymous Jellyfish 1y #489ff =+ Resolved
FA21-MT-Q5.3

is calculating the distance in memory between instruction and functions in scope?

https://edstem.org/us/courses/43491/discussion/3527332?comment=8265284
https://edstem.org/us/courses/43491/discussion/3527332?comment=8265284
https://edstem.org/us/courses/43491/discussion/3527332?comment=8249893
https://edstem.org/us/courses/43491/discussion/3527332?comment=8249893

Eddy Byun sTaFF 1y #489abc

Yes

Anonymous Jellyfish 1y #489fb = v Resolved
FA21-MT-Q3:

Line: car =

The answer key doesn't acknowledge blank 6 (the blank behind car)? Why is there a 6th blank on
the question? Was this a trap blank? Typo? The correct answer would have been to leave blank 6
empty but the instructions told me to fill in the blanks so i'm kinda lost...

Eddy Byun starF 1y #489abb

Yea, sorry for the confusion! It's a typo #489ce
\2RTE

Anonymous Snake 1y #489fa =+ Resolved

SP21-MT-Q8 Part b.ii.A

How do we know there is an exponent bias of 255?

Justin Yokota sTarF 1y #489fe

Standard bias for IEEE-754 floating point numbers is 2A(number of exponent bits - 1) -1.
Under our current exam policy, this would have been clarified on the exam.

Q1

Anonymous Kangaroo 1y #489de @ v Resolved

SP21-MT-Q8

Can someone explain the step-by-step process of how we get the solutions for part a and part b?

https://edstem.org/us/courses/43491/discussion/3527332?comment=8251796
https://edstem.org/us/courses/43491/discussion/3527332?comment=8251796
https://edstem.org/us/courses/43491/discussion/3527332?comment=8248632
https://edstem.org/us/courses/43491/discussion/3527332?comment=8248632
https://edstem.org/us/courses/43491/discussion/3527332?comment=8251785
https://edstem.org/us/courses/43491/discussion/3527332?comment=8251785
https://edstem.org/us/courses/43491/discussion/3527332?comment=8229592
https://edstem.org/us/courses/43491/discussion/3527332?comment=8248284
https://edstem.org/us/courses/43491/discussion/3527332?comment=8248284
https://edstem.org/us/courses/43491/discussion/3527332?comment=8249014
https://edstem.org/us/courses/43491/discussion/3527332?comment=8249014
https://edstem.org/us/courses/43491/discussion/3527332?comment=8234896
https://edstem.org/us/courses/43491/discussion/3527332?comment=8234896

8. FLOATING POINT

For the following floating point questions, please use
parentheses around the exponent. For example, 2°-12.

as the power operator in your answer. Do NOT put

(a) (3.0 pt) We define floating-point standard A to have 1 sign bit, 10 exponent bits, and 21 mantissa bits
and floating-point standard B to have 1 sign bit, 18 exponent bits, and 45 mantissa bits. All other rules of
IEEE 754 apply to standard A and B. How many more non-zero positive values can standard B represent
compared to standard A7 Please format your answer as additions and subtractions of 2’s powers.

263 _ 245 _ 231 + 221

(b) For the following parts, use a floating point standard with 1 sign bit, 9 exponent bits, and 22 mantissa bits.

i. In discussion 3, we defined the step size of x to be the distance between x and the smallest value
larger than x that can be completely represented. Now consider all floating-point numbers in the range
(27120 4-27119,80].

A. (2.0 pt) What is the largest step size?

2716

Isita Talukdar 1y #489aac
also confused about it

Eddy Byun starF 1y #489aaf

For 8a), standard A is 32 bits long and standard B is 64 bits long, and Standard B can
represent every positive number that Standard A can. Standard B can represent 2632452
non-zero positive numbers. The 263 is from the fact that there are 2°3 numbers in the
floating point representation where the sign bit is 0. The -2%°-1 is from the fact that there are
2%% -1 NANSs, and 1 zero. Standard A can represent 231-221- 2 positive values using the same
logic, except that it has less mantissa and exponent bits. We can then do this operation (# of
positive values Standard B can represent) - (# of positive values Standard A can represent) =
(203 -245.2) - (231.221.2) = 263 245 . 231 + 227 which is our final answer!

For 8b) Our largest number in this range, 80, can be represented as follows:

1.010000.....0 * 28, The next smallest number that can be fully represented is if we take the
rightmost bit of the mantissa and change the 0 to a 1. Now, if we shift the decimal point back

so that we get 101000.00000....1 * 29, you should notice the 1 that we changed is in the 21©
position!

Anonymous Weasel 1y #489bcc
if there are 2445 NANs in B, then why 22422 NANs in A?

Eddy Byun staFF 1y #489bcd
“ Replying to Anonymous Weasel

Sorry, that was a typo on my end - it should be 2% - 1 NANs for B and 2211 NANs for
A

https://edstem.org/us/courses/43491/discussion/3527332?comment=8251010
https://edstem.org/us/courses/43491/discussion/3527332?comment=8251010
https://edstem.org/us/courses/43491/discussion/3527332?comment=8251718
https://edstem.org/us/courses/43491/discussion/3527332?comment=8251718
https://edstem.org/us/courses/43491/discussion/3527332?comment=8272368
https://edstem.org/us/courses/43491/discussion/3527332?comment=8272368
https://edstem.org/us/courses/43491/discussion/3527332?comment=8272453
https://edstem.org/us/courses/43491/discussion/3527332?comment=8272453
https://edstem.org/us/courses/43491/discussion/3527332?comment=8272368

Y

Anonymous Hawk 1y #489ccc

For 8b, wouldn't that be the smallest step size then?
Y

Anonymous Kangaroo 1y #489dd = v Resolved
SP21-MT-Q3

How do | know when there is clk-to-q time and where there is setup time involved?

The Clk-To-Q time makes sense since for a register to change, there is clk-to-q time involved but
how do | know when there is setup involved?

Why is there setup time for part b and not for part a?

3. SDS
For the following question, do NOT include units in your answer!

In the following circuit, the registers have a clk-to-q delay of 6ns and setup times of 5ns. NOT gates have a delay
of 3ns, AND and OR gates have a delay of Tns, and the “Black Box” logic component has a delay of 9ns.

Black Box Logic

[™]
L

TP

Circuit

(a) (2.5 pt) What is the maximum allowable hold time of the registers?

[

28

The shortest path through the circuit to a register clearly follows the path from A to O and includes:
clk-to-q delay, two NOT gates, one OR gate, and the “Black Box.” Maximum hold time =6 + 23 + 7 + 9
= 28ns

(b) (2.5 pt) What is the minimum acceptable clock period for this circuit?

47

The period is determined by the longest path and includes: clk-to-q delay, two NOT gates, three OR

gates (or two OR gates and one AND gate), the “Black Box”, and the setup time. Minimum period = 6 +
2%3 + 3%7 + 9 + b = 47ns

Max Vink 1y #489ee

+1, i don't know why the setup time is not relevant to the shortest path
)

Justin Yokota starF 1y #489fd

One analogy | like to think about is a photoshoot; the idea is that we need to take a
bunch of photos of a group of people (once per clock trigger), and between each photo,
the people move around to new places. We need to ensure that there's enough time

https://edstem.org/us/courses/43491/discussion/3527332?comment=8276982
https://edstem.org/us/courses/43491/discussion/3527332?comment=8276982
https://edstem.org/us/courses/43491/discussion/3527332?comment=8234448
https://edstem.org/us/courses/43491/discussion/3527332?comment=8234448
https://edstem.org/us/courses/43491/discussion/3527332?comment=8244448
https://edstem.org/us/courses/43491/discussion/3527332?comment=8244448
https://edstem.org/us/courses/43491/discussion/3527332?comment=8248971
https://edstem.org/us/courses/43491/discussion/3527332?comment=8248971

between photos so that everyone's in their new places, and such that the pictures don't
end up blurry.

Setup time and hold time are how much time before and after the photo gets taken
that we need everyone to stay still, respectively. Setup time gets added to the clock
cycle, since we need to wait that long with everyone staying still before starting the next
photo. However, that time has no effect on how long we need people to stay still after
we take the photo.

@ .o

Anonymous Kangaroo 1y #489cb = v Resolved

SP21-MT-Q8 Part b.ii.A
Why is the answer 0xA6900000?
1) Sign bit is 1 because the number is negative

2) My exponent bits are 0 1001 1011 = 155, because 155 - 255 (standard bias for this format) =
-100 which is the exponent we have in the number repsentation.

3) My mantissa bits are 10 1000 0000 0000 0000 0000 = .625 which is exactly what we want.

Putting it all together we get: 1010 0110 1110 1000 0000 0000 0000 0000

This translates to -> 0XA6E80000.

Can someone please point out where am | going wrong?
Q) e

Eddy Byun starF 1y #489abf

[Reposting because | accidentally deleted my answer D:]

Recall that normal numbers have an implicit 1 before the mantissa.

Here's how | attempted this problem:

| first converted 0.625 to scientific binary form:

0.625 = 1.01 0000 0000 0000 0000 0000 * 27!

Then, simplify our expression:

1.01 0000 0000 0000 0000 0000 * 2" * 2:190 = 1,01 0000 0000 0000 0000 0000 * 2-10

From here, we need to calculate the raw number that we convert the exponent to: -101 + 255
=154.

154 to binary: Ob 010011010
Put it all together!

1010011010 0100000000000000000000

https://edstem.org/us/courses/43491/discussion/3527332?comment=8229472
https://edstem.org/us/courses/43491/discussion/3527332?comment=8229472
https://edstem.org/us/courses/43491/discussion/3527332?comment=8253146
https://edstem.org/us/courses/43491/discussion/3527332?comment=8253146

1010 0110 1001 0000 0000 0000 0000 0000

0xA6900000
D1

Anonymous Swallow 1y #489acc

why is there an extra 0 for the exponent. Isn't the exponent only supposed to have 8
bits?

\2TH

Eddy Byun sTare 1y #489ace

“ Replying to Anonymous Swallow
For the following parts, use a floating point standard with 1 sign bit, 9
exponent bits, and 22 mantissa bits.

O .

Anonymous Frog 1y #489bc =« Resolved
Fa21-Midterm-Q7

Is this in scope?
D1

Eddy Byun sTAFF 1y #489ca

There was no Q7 for the Fa21 Midterm. Did you mean Q6? If so, yes Fa21-Midterm-Q6 is in
scope!

@ .o

Anonymous Frog 1y #489db

Thanks! I did mean to say Q6 sorry about the confusion. Thanks again for the speedy
response!

@ oo

Anonymous Frog 1y #489ba = v Resolved
Fa21-Midterm-Q5.1

Why can we assume that the buffer is already inputted at the sp? Is this just how buffers work?
Honestly, I'm still kind of confused what a buffer is.
@ eee

Eddy Byun sTare 1y #489cc

A buffer is some memory that we allocate. For this question, we allocated 20 bytes by
decrementing the stack pointer (we decrement by 24 but we use 4 bytes to store ra). We
then move the stack pointer to a6 and then call the Get20chars function (line 5: jal ra
Get20chars). The Get20chars function is going to fill up the buffer (aka the stack that we
allocated) with 20 bytes. As a result, after making the call to Get20chars, we can assume
that from memory address sp to sp+20, we inputted characters.

Anonymous Frog 1y #489dc

Ohhhh I see. We fill up the buffer after calling Get20chars. Thanks for clarifying!
@ eee

Anonymous Anteater 1y #489af = v Resolved

https://edstem.org/us/courses/43491/discussion/3527332?comment=8254340
https://edstem.org/us/courses/43491/discussion/3527332?comment=8254340
https://edstem.org/us/courses/43491/discussion/3527332?comment=8255266
https://edstem.org/us/courses/43491/discussion/3527332?comment=8255266
https://edstem.org/us/courses/43491/discussion/3527332?comment=8254340
https://edstem.org/us/courses/43491/discussion/3527332?comment=8229077
https://edstem.org/us/courses/43491/discussion/3527332?comment=8229077
https://edstem.org/us/courses/43491/discussion/3527332?comment=8229471
https://edstem.org/us/courses/43491/discussion/3527332?comment=8229471
https://edstem.org/us/courses/43491/discussion/3527332?comment=8229835
https://edstem.org/us/courses/43491/discussion/3527332?comment=8229835
https://edstem.org/us/courses/43491/discussion/3527332?comment=8228755
https://edstem.org/us/courses/43491/discussion/3527332?comment=8228755
https://edstem.org/us/courses/43491/discussion/3527332?comment=8229501
https://edstem.org/us/courses/43491/discussion/3527332?comment=8229501
https://edstem.org/us/courses/43491/discussion/3527332?comment=8229838
https://edstem.org/us/courses/43491/discussion/3527332?comment=8229838
https://edstem.org/us/courses/43491/discussion/3527332?comment=8228754
https://edstem.org/us/courses/43491/discussion/3527332?comment=8228754

Sp21 MT1 Q3

Solution:

cons *map(cons *c, (void *) (*f) (void *)) {
cons *ret;
if (¢ == NULL) return NULL;
ret = malloc(sizeof(cons));
ret->extra.d = 0;
car = f(c->car);
ret->cdr = map(c->cdr, f);
return ret;

}

Why is the third to last line not ret->car? Also | dont completely understand the explanation to
why you dont need *f(c->car), cause isn't f a pointer?
\2RTE

Anonymous Frog 1y #489bb

Al think it may be a typo but would like a confirmation as well
(9 .o

Eddy Byun sTarF 1y #489ce

Sorry for any confusion! | think there's a typo in the solutions. You're right - it should be ret-

>car .

You can do either (*f)(c->car) or f(c->car) are equivalent. You can't do *f(c->car) because this
will dereference your call to f.
Q) .oe

Anonymous Anteater 1y #489df

What do you mean by dereference your call to f? Like shouldn't (*f)(c->car) dereference
the pointer too?

Q) s

Eddy Byun starF 1y #489aba
4+ Replying to Anonymous Anteater

(xf) (c->car) and f(c->car) are equivalent and acceptable answers. This is different
from xf(c->car) is going to make the function call to f first and then we dereference
the return value of f , which is different from (xf) (c->car) and f(c->car) .

D1

Anonymous Anteater 1y #489ae @ v/ Resolved

SP21 MT1 Q2

https://edstem.org/us/courses/43491/discussion/3527332?comment=8228761
https://edstem.org/us/courses/43491/discussion/3527332?comment=8228761
https://edstem.org/us/courses/43491/discussion/3527332?comment=8229592
https://edstem.org/us/courses/43491/discussion/3527332?comment=8229592
https://edstem.org/us/courses/43491/discussion/3527332?comment=8235305
https://edstem.org/us/courses/43491/discussion/3527332?comment=8235305
https://edstem.org/us/courses/43491/discussion/3527332?comment=8251771
https://edstem.org/us/courses/43491/discussion/3527332?comment=8251771
https://edstem.org/us/courses/43491/discussion/3527332?comment=8235305
https://edstem.org/us/courses/43491/discussion/3527332?comment=8228648
https://edstem.org/us/courses/43491/discussion/3527332?comment=8228648

Q2 Now, Where Did I Put Those Strings? (10 points)
Consider the following code:

char *foo() {
char *strl = "Hello World";
char str2[] = "Hello World";
char *str3 = malloc(sizeof(char) * X);
strcpy(str3, "Hello World");
// INSERT CODE FROM PARTS 5-7
}

The char *strcpy(char *dest, char *src) copies the string pointed to by src, including the
terminating null byte (*\0"), to the buffer pointed to by dest. The strings may not overlap, and the
destination string dest must be large enough to receive the copy.

Q2.1 (1 point) Where is *str1 located in memory?

QO code @ static QO heap (O stack

Solution: Static
This question is asking about the location of *str1, the address stored in strl.

The code assigns the strl pointer to a hard-coded string "Hello World". C will put this
hard-coded string in static memory.

Grading: 1 point for selecting static.

Q2.2 (1 point) Where is *str2 located in memory?

QO code O static Q heap @ stack

Solution: Stack
This question is asking about the location of *str2, the address stored in str2.

str2 is a character array, and it is declared inside the foo function, so it is a local variable.
Local variables are stored in stack memory.

Grading: 1 point for selecting stack.

| dont really get the explanation for these two questions? What is the distinction that makes str1
static, and str2 stack?

Erik Yang sTarF 1y #489%ea

*str1 is a string constant and is read-only. String constants are stored in the static part of
memory. str2[] is a char array that is stored/allocated on the stack and is mutable

Anonymous Anteater 1y #489eb

so in general if something is in the form *str1, it is static?

Erik Yang sTarF 1y #489ec
4+ Replying to Anonymous Anteater

for strings defined in funcitons, yeah

https://edstem.org/us/courses/43491/discussion/3527332?comment=8235372
https://edstem.org/us/courses/43491/discussion/3527332?comment=8235372
https://edstem.org/us/courses/43491/discussion/3527332?comment=8235416
https://edstem.org/us/courses/43491/discussion/3527332?comment=8235416
https://edstem.org/us/courses/43491/discussion/3527332?comment=8235529
https://edstem.org/us/courses/43491/discussion/3527332?comment=8235529
https://edstem.org/us/courses/43491/discussion/3527332?comment=8235416

Anonymous Bear 1y #489ad =+ Resolved
SP21-MT-Q7b(ii),

Does this mean hashFunc is a pointer to a function? If so, why don't we deference hashFunc
before calling it in 7b(ii), like this: *(bf->hashFunc) (element, i)

struct BloomFilter {
uint64_t (*hashFunc) (void #, uint32_t);
uintl6_t iters;
uint32_t size; /* The size in BITS of the bloom filter */
uint8_t * data; /* Size of uint8_t is always 1 */

};

Eddy Byun starF 1y #489cf

You don't need to dereference it in C. You could, but it would have to be (xbf->hasFunc)
(element, i) . x(bf->hashFunc) (element, 1) is going to dereference the result that you
get from calling hashFunc on arguments element and 5.

@2

Anonymous Otter 1y #489ab v Resolved

SP21-MT-Q8 Part b.ii.B: How does 0xC07C0000 translate to -7.75? | keep getting -17.75. Because
when | write out the representation of this hex in binary it's

061100 0000 1100 0111 0000 0000 0000 0000

And group terms together gives me:

0b1 100000011 0001110000000000000000

where exponent is 259 (259 - bias gives us 4)
so,

(-1)A1*(274) *(0b1.000111) =-17.75
Q) e

Anonymous Kangaroo 1y #489bf £ ENDORSED

In the first step, 7 in binary is -> 0111 not 1100

Eddy Byun starF 1y #489cd

Yea, what Anon Kangaroo said. It looks like you switched the C and the 7.
\2RTE

Anonymous Lobster 1y #489aa =+ Resolved
FA21-MT-Q3

https://edstem.org/us/courses/43491/discussion/3527332?comment=8228312
https://edstem.org/us/courses/43491/discussion/3527332?comment=8228312
https://edstem.org/us/courses/43491/discussion/3527332?comment=8229612
https://edstem.org/us/courses/43491/discussion/3527332?comment=8229612
https://edstem.org/us/courses/43491/discussion/3527332?comment=8225492
https://edstem.org/us/courses/43491/discussion/3527332?comment=8225492
https://edstem.org/us/courses/43491/discussion/3527332?comment=8229437
https://edstem.org/us/courses/43491/discussion/3527332?comment=8229437
https://edstem.org/us/courses/43491/discussion/3527332?comment=8229552
https://edstem.org/us/courses/43491/discussion/3527332?comment=8229552
https://edstem.org/us/courses/43491/discussion/3527332?comment=8225317
https://edstem.org/us/courses/43491/discussion/3527332?comment=8225317

Is this question in scope?
\2RTE

Eddy Byun starF 1y #489be

Yes
QD e

Anonymous Otter 1y #489d @ v Resolved

SP21-MT-Q7

(a) Consider the following structure definition. Assume we are using a 32-bit machine.

struct foo {
char a;
char *b;

}
And the following C code
void bar(struct foo *f){

int i;

%éé&i =0; i <5, ++i){
baz(£[i].b);
}
}

i. (2.0 pt) What is sizeof (struct foo)?

8

How is the sizeof(struct foo) = 8? Shouldn't it be 5? 1 byte for char a + 4 bytes for pointer b?
D1

Anonymous Lark 1y #489%e £ ENDORSED

| think you should leave room for padding. On the first line, the char is only 1 byte but we
read 4 bytes at one time. So we need to add 3 to that.

@ Andrew Liu STAFF 1y #489f

Yep! The struct is padded out to a 4 byte boundary.
D1

Anonymous Okapi 1y #489c =+ Resolved
SP21-MT-Q7:

I'm very very confused on how to get started on this question, is there a way i can find a
walkthrough or a more detailed solution of this?
@ .

Eddy Byun sTarF 1y #489bd

Sure, could you specify which subpart you're stuck on? (a or b?)

Anonymous Hamster 1y #489a @ v/ Resolved

SP21-MT-Q5

https://edstem.org/us/courses/43491/discussion/3527332?comment=8229426
https://edstem.org/us/courses/43491/discussion/3527332?comment=8229426
https://edstem.org/us/courses/43491/discussion/3527332?comment=8206469
https://edstem.org/us/courses/43491/discussion/3527332?comment=8206469
https://edstem.org/us/courses/43491/discussion/3527332?comment=8209363
https://edstem.org/us/courses/43491/discussion/3527332?comment=8209363
https://edstem.org/us/courses/43491/discussion/3527332?comment=8211336
https://edstem.org/us/courses/43491/discussion/3527332?comment=8211336
https://edstem.org/us/courses/43491/discussion/3527332?comment=8204072
https://edstem.org/us/courses/43491/discussion/3527332?comment=8204072
https://edstem.org/us/courses/43491/discussion/3527332?comment=8229425
https://edstem.org/us/courses/43491/discussion/3527332?comment=8229425
https://edstem.org/us/courses/43491/discussion/3527332?comment=8172362
https://edstem.org/us/courses/43491/discussion/3527332?comment=8172362

Do the questions mentioned out of scope in the Q&A remain constant for this semester as well?
Can we get a list of the out of scope ones?

D1

Jero Wang sTtarF 1y #489b

Q5 is entirely out of scope for FA23 midterm (though please ask - the Q&A are for the specific
semester they were asked)

https://edstem.org/us/courses/43491/discussion/3527332?comment=8199149
https://edstem.org/us/courses/43491/discussion/3527332?comment=8199149

