You are viewing this thread in readonly mode.

[Midterm] Past Exams - 2023 #487

Jero Wang sTarF 2,834
Last year in Exam - Midterm VIEWS

You can find the past exams here: https://cs61c.org/fa23/resources/exams/. Please check the
linked past Piazza/Ed Q&A PDFs first before asking here. Many of the questions are already
answered in those! Video walkthroughs (if available), are also linked on that page!

When posting questions, please reference the semester, exam, and question in this format so
it's easier for students and staff to search for similar questions:

Semester-Exam-Question Number

For example: SP22-Final-Q1, or SU22-MT-Q3

Anonymous Alpaca 1y #487abce = v Resolved

SP23 MT 1.8 - the reference sheet says we used "signed decimal integer" for %d. | thought this

meant we use a sign-magnitude representation. how do we know that we have to use 2s
complement?

C Format String Specifiers
Specifier |Output

d or i |Signed decimal integer

Q1.8 (2 points)

Solution: —89

0xA7 interpreted as a signed, two’s complement, 8-bit integer is —89.

Erik Yang sTaFF 1y #487abda

twos complement is generally the standard to represent signed numbers
D1

Anonymous Alpaca 1y #487abdc

will the exam specify that, or can we ask a TA during the exam for clarification? some of

these instructions seem a bit vague, or like requires us to make some assumptions.
\2TH

Erik Yang sTAFF 1y #487abde
<+ Replying to Anonymous Alpaca

think you can assume twos complement unless specified
\2TH

https://edstem.org/us/courses/43491/discussion/3527328
https://edstem.org/us/courses/43491/discussion/3527328
https://cs61c.org/fa23/resources/exams/
https://edstem.org/us/courses/43491/discussion/3527328?comment=8305208
https://edstem.org/us/courses/43491/discussion/3527328?comment=8305208
https://edstem.org/us/courses/43491/discussion/3527328?comment=8305267
https://edstem.org/us/courses/43491/discussion/3527328?comment=8305267
https://edstem.org/us/courses/43491/discussion/3527328?comment=8305495
https://edstem.org/us/courses/43491/discussion/3527328?comment=8305495
https://edstem.org/us/courses/43491/discussion/3527328?comment=8305644
https://edstem.org/us/courses/43491/discussion/3527328?comment=8305644
https://edstem.org/us/courses/43491/discussion/3527328?comment=8305495

Justin Yokota sTarF 1y #487abdf

4 Replying to Erik Yang

Unless otherwise specified, we ALWAYS use 2's complement for signed numbers,
because it's so much better than any other option.

Anonymous Alpaca 1y #487abbd v Resolved

SP23 MT 2.13 - is this a valid answer: "Not memory efficient because there's extra memory being
used by page->data (since new_data has less elements). Must call realloc first on page->data."

Q2.13 (3 points) Is the following implementation of update_data correct (follows the described behav-
ior) and memory efficient?

int MAX_STR_LEN = 100;

1

2

3 // You may assume that new_data is stored on the heap
4 // and page is well-formed

5 wvoid update_data(Page* page, char* new_data) {

6 if (strlen(new_data) > MAX_STR_LEN) {
7 return;

8 }

9 page->data = new_data;
10

O (A) Yes @® (B)No

If you selected "No", provide a brief explanation. If you selected "Yes", leave this box blank.
We will only grade the first 15 words of your answer.

Solution: Memory leak. We need to free the old data before reassigning page->data to
new_data.

Note: There were a couple of alternative answers

1. Mentioning that line 6 is incorrect because strlen doesn’t include the null terminator.
There was ambinguity in what "length" meant (Does length include the null terminator or
not?)

2. (Out of scope) Mentioning how comparing size_t to an int could lead to a security vul-
nerability where the comparison on line 6 would fail, specifically if how strlen(new_data)
returned a number where, if represented in binary, had a leading 1. This solution is out of
scope for this class, and was only deemed correct if the student’s answer got every aspect of it
correct.

Erik Yang sTarF 1y #487abcc

line 9 is where you are just simply replacing page->data with the new data so there isn't a
need to realloc

https://edstem.org/us/courses/43491/discussion/3527328?comment=8305949
https://edstem.org/us/courses/43491/discussion/3527328?comment=8305949
https://edstem.org/us/courses/43491/discussion/3527328?comment=8305644
https://edstem.org/us/courses/43491/discussion/3527328?comment=8304898
https://edstem.org/us/courses/43491/discussion/3527328?comment=8304898
https://edstem.org/us/courses/43491/discussion/3527328?comment=8305140
https://edstem.org/us/courses/43491/discussion/3527328?comment=8305140

Anonymous Alpaca 1y #487abcd

if you're just replacing the data, why does the answer key say that you need to free the
old page->data?

the question also asks about memory efficiency, so | thought that page->data might
have a different length than new_data, so a realloc would be memory efficient.

Y

Erik Yang sTarF 1y #487abcf

“ Replying to Anonymous Alpaca

we need to free because we're getting rid of the old_data, which was something that
was allocated on the heap and replacing with new_data

O

Anonymous Alpaca 1y #487abbb + Resolved
SP23 MT 2.3, 2.9

e 2.3-just wanted to clarify the order of operations for the "*" and "&" operators. is "&sheet-
>pagesli]" the same as "&(sheet->pagesl[i]" ?

e 2.9-couldigetan explanation for why "&sheet = ch" would not work? my thought was that
i'm setting the memory address of "sheet" to be "ch". how does de-referencing the pointer
to the location in memory by doing "*ch" end up saving a pointer to the Cheatsheet sheet
at the address ch points to?

Solution:

02.1: calloc(1l, sizeof(Cheatsheet)

Note that we need to calloc in this case in order to set total_length equal to 0.
Q2.2: ->student_id

Q2.3: &sheet->pages[i]

When we allocate memory on the heap for a Cheatsheet, we allocate memory for a Page array
of size NUM_PAGES. Therefore, we already allocated memory for each Page. In order to get the
correct Page, we need to index into the correct Page in our Cheatsheet (sheet->pages[i]). To
get the pointer to this Page, we will use the & to get a pointer to this Page (&sheet->pages[i])

Q2.4: ->num
0Q2.5: ->data
0Q2.6: malloc(sizeof(char) * (strlen(contents[i]) + 1))

Note that we allocated memory for a char pointer but we now need to actually allocate memory
for the string itself. Also, strlen doesn’t consider the null-terminator, so we need to add 1.

erm (Question 2 continues...) Page 7 of 17 CS 61C - Spring 2023

content is protected and may not be shared, uploaded, or distributed.

:stion 2 continued...)

Q2.7: ->data
Q2.8: ->total_length
0Q2.9: *ch = sheet

Erik Yang sTaFF 1y #487abbc

https://edstem.org/us/courses/43491/discussion/3527328?comment=8305176
https://edstem.org/us/courses/43491/discussion/3527328?comment=8305176
https://edstem.org/us/courses/43491/discussion/3527328?comment=8305221
https://edstem.org/us/courses/43491/discussion/3527328?comment=8305221
https://edstem.org/us/courses/43491/discussion/3527328?comment=8305176
https://edstem.org/us/courses/43491/discussion/3527328?comment=8304785
https://edstem.org/us/courses/43491/discussion/3527328?comment=8304785
https://edstem.org/us/courses/43491/discussion/3527328?comment=8304859
https://edstem.org/us/courses/43491/discussion/3527328?comment=8304859

first Q: #487aaab

second Q: The problem asks to save a pointer to that Cheatsheet at the address ch points to.
This means that you need to dereference ch and set it to sheet.

Q1

Anonymous Alpaca 1y #487abca

so initially, sheet has some existing random memory address. after you do "*ch =
sheet", will that change the value returned by "&sheet" ?
@ eee

Anonymous Turtle 1y #487abad v Resolved
SP23-MT-Q1.10

just want to clarify that str = 0x6865 6c6c 6f21 2100, and the memory layout is:
address of string: 0x00

+1: 0x21

+2: 0x21

+3: 0x6f,

so the ((int8_t*)str)[1] is actually a+6 instead of a+1, right?

Justin Yokota sTarF 1y #487abae

No; the string is 0x68 0x65 0x6¢ 0x6¢ 0x6f 0x21 0x21 0x00, not 0x68656c6¢6f212100. The
address of string contains the data 0x68, then +1 is 0x65, and so on.

On 1.11, the 32-bit pointer looks for data at +4 - +7, which corresponds to the Ox6F 0x21
0x21 0x00. This, when evaluated as a 32-bit integer in a little-endian system, is 0x0021216F.

D1

Anonymous Snake 1y #487abaa + Resolved

General: When do you use the implicit 1 when doing floating point conversions?
D e

Anonymous Antelope 1y #487abac

| think when you are encountering any normal numbers, any denorms you use the implicit 0
| am pretty sure
\2RTE

Justin Yokota starF 1y #487abaf

As above.
@ s

Anonymous Vulture 1y #487aafa v Resolved

SP23-MT-Q2.9

Would ch = &sheet also be a valid answer?
@ eoe

https://edstem.org/us/courses/43491/discussion/threads/487aaab
https://edstem.org/us/courses/43491/discussion/3527328?comment=8304954
https://edstem.org/us/courses/43491/discussion/3527328?comment=8304954
https://edstem.org/us/courses/43491/discussion/3527328?comment=8304018
https://edstem.org/us/courses/43491/discussion/3527328?comment=8304018
https://edstem.org/us/courses/43491/discussion/3527328?comment=8304221
https://edstem.org/us/courses/43491/discussion/3527328?comment=8304221
https://edstem.org/us/courses/43491/discussion/3527328?comment=8303688
https://edstem.org/us/courses/43491/discussion/3527328?comment=8303688
https://edstem.org/us/courses/43491/discussion/3527328?comment=8303834
https://edstem.org/us/courses/43491/discussion/3527328?comment=8303834
https://edstem.org/us/courses/43491/discussion/3527328?comment=8304224
https://edstem.org/us/courses/43491/discussion/3527328?comment=8304224
https://edstem.org/us/courses/43491/discussion/3527328?comment=8302131
https://edstem.org/us/courses/43491/discussion/3527328?comment=8302131

Eddy Byun sTtarF 1y #487aafc
#487bff

Anonymous Lyrebird 1y #487aaee = v Resolved

SP23-MT-Q6.2

The shortest path between any two timed elements is actually the path from the SEL
signal, which changes instantly at the rising edge of the clock, to the right register. This
path has only delay 25 ps from the mux.

This was the first time | realized the need to consider non-register elements in the shortest path.
That said, is there a more fitting strategy that can be given for examining and finding the shortest
path? What other elements like SEL are timed and may have an impact?

Erik Yang sTaFF 1y #487abbf

this question is unique in that the SEL signal is actually timed, so you would need to account
for that in finding the shortest path

Anonymous Monkey 1y #487aaed = + Resolved
SU23-MT-Q1.11

How do we get the range of [-510, 511]? Is there a general formula for getting the range of
exponents? Also would the range be different if the standard bias was 511 instead?
Q1.11 (1.5 points) Represent 1.5 x 275! in hex using a binary floating point representation, which

follows IEEE-754 standard conventions, but has 10 exponent bits (and a standard bias of -511) and
21 mantissa bits.

Solution: 0x00180000

Looking at the number, it is equal to 1.15 x 27311, Since we can only represent exponents from
—510 to 511 with a normal floating point number, this means our number must be represented
as a denormalized number, with a fixed exponent of 27%10. Rewriting our number to use this
new exponent gives 0.115 x 27510, Thus the floating point representation is:

Eddy Byun star 1y #487abbe

For 10 exponent bits, our normal numbers have exponents in this range: 0000000001 (1) to
1111111110 (1022). When we apply our standard bias of -511, we get a range of [-510,511].

The standard bias for a 10 bit binary number is -511, so I'm a bit confused about your second
question. Feel free to follow up!

1

Anonymous Lion 1y #487aaec + Resolved

SU23-MT-Q4.1

https://edstem.org/us/courses/43491/discussion/3527328?comment=8302390
https://edstem.org/us/courses/43491/discussion/3527328?comment=8302390
https://edstem.org/us/courses/43491/discussion/3527328?comment=8266114
https://edstem.org/us/courses/43491/discussion/3527328?comment=8301922
https://edstem.org/us/courses/43491/discussion/3527328?comment=8301922
https://edstem.org/us/courses/43491/discussion/3527328?comment=8304932
https://edstem.org/us/courses/43491/discussion/3527328?comment=8304932
https://edstem.org/us/courses/43491/discussion/3527328?comment=8301752
https://edstem.org/us/courses/43491/discussion/3527328?comment=8301752
https://edstem.org/us/courses/43491/discussion/3527328?comment=8304902
https://edstem.org/us/courses/43491/discussion/3527328?comment=8304902
https://edstem.org/us/courses/43491/discussion/3527328?comment=8301096
https://edstem.org/us/courses/43491/discussion/3527328?comment=8301096

1 next_number:

2 addi sp sp -4
3 sw s0 0(sp)

4 is_odd s0 a0
5 beq s0 x0 else
6 slli s0 a0 1
7 add so s0 a0
8 addi a0 s0 1
9 j exit
10 else:
11 srai a0 a0 1
12 exit:

13 lw s0O 0(sp)
14 addi sp sp 4
15 jr ra

Would it be okay to do
Line 6: add a1, a0, a0
Line 7: add a0, a0, a1
Line 8 addi a0, a0, 1.

Since we don't need to maintain a1 by calling convention, and it is not one of the t registers, is it
okay to use it as an intermediate storage register for 2*a0, before completing with 2*a0 + a0 + 1
to get 3*a0 + 1.

D e

Justin Yokota sTarF 1y #487abba

You can use a registers the same way as t registers, so this would technically work. | would
hazard a guess that a clarification would have been made that you can't use unused a
registers either.

Anonymous Lion 1y #487aaeb v/ Resolved

SU23-MT-Q6.1

| understand that the top right reg to top left reg has a 25 ps delay path, but since it is asking for
the smallest combinatorial delay, shouldn't that mean the shortest time it takes for the input to
propagate to the output according to the intended combinatorial behavior? In that case, wouldn't
the 50ps delay of the multiplier matter, and cause the shortest delay to be 70 ps?

https://edstem.org/us/courses/43491/discussion/3527328?comment=8304296
https://edstem.org/us/courses/43491/discussion/3527328?comment=8304296
https://edstem.org/us/courses/43491/discussion/3527328?comment=8300903
https://edstem.org/us/courses/43491/discussion/3527328?comment=8300903

/’" O<7}
tanp = 20ps
B txor = Ops
tor = 20ps
D>
—\ — | -
X - _/ txor = 25ps
> Emultiplier = 90ps
0@ ¢ tsubtract = 35]35
f tc].k—q = FlpS
[e ‘ ('_ toerup = 2PS
3<: deadbeef
pr— 0000061 C
B0@acall

Q6.1 (2 points) What is the smallest combinational delay of all paths in this eircuit, in picoseconds?

Solution: 25ps

The shortest CL path is between the right register and the top left register, consisting of a
NOT gate and an OR gate, for a total delay of 25ps.

Grading: All-or-nothing.

Darwin Zhang sTAFF 1y #487abab

The shortest path is the path that has the smallest delay between two registers. In this case,
the path is from the right register to the top left.

https://edstem.org/us/courses/43491/discussion/3527328?comment=8303796
https://edstem.org/us/courses/43491/discussion/3527328?comment=8303796

Anonymous Lobster 1y #487aadd v Resolved
SUM-MT-Q6.1

Since one of the inputs to the top OR gate is the output of the multiplier, why don't we account for
the multiplier time when calculating the length of this path?

T 0<]
tanp = 20ps
D Q tnoT = Sps
tOR = 20pS
ok 5 g—
X _ / txor = 25ps
> tmulliplier = 50ps
D Q & Lsubtract = 35ps
= j £ Lok-q = 5ps
.—n.l" D>
t =2
(v—deadbeef setup ps
0<} s 100006 1.C
0000call

Q6.1 (2 points) What is the smallest combinational delay of all paths in this circuit, in picoseconds?

Solution: 25ps

The shortest CL path is between the right register and the top left register, consisting of a
NOT gate and an OR gate, for a total delay of 25ps.

Grading: All-or-nothing.

Ekansh Agrawal sTarF 1y #487aadf

We can assume that a value is already present when we calculate the output of the top left
OR gate. Since we are calculating a path to a register to register, we don't need to wait on
any gates, we simply calculate the blocks in our direct path.

\2RTE

Anonymous Chicken 1y #487aadb = + Resolved
SP23-MT-Q6.1

Q6.1 (3 points) What is the minimum clock period for the circuit above such that it will always result
in well-defined behavior?

Solution: 1075 ps

The longest path goes through the multiplier, by far the slowest block in the circuit.

From the rising edge of the clock, we have to wait 30 ps for the signal to show up at the register
output. Then, we have to wait 1000 ps for the signal to move through the multiplier, and
another 25 ps for the signal to move through the mux. Finally, we have to reach the rightmost
register 20 ps early (before the next rising edge) to account for the setup time.

In total, this is 30 + 1000 + 25 + 20 = 1075 ps.

| am confused why the answer for 6.1 starts at the rising edge of the clock. | thought when it came
to finding combinatorial paths, you were always supposed to find the delays between two
registers?

https://edstem.org/us/courses/43491/discussion/3527328?comment=8299289
https://edstem.org/us/courses/43491/discussion/3527328?comment=8299289
https://edstem.org/us/courses/43491/discussion/3527328?comment=8299979
https://edstem.org/us/courses/43491/discussion/3527328?comment=8299979
https://edstem.org/us/courses/43491/discussion/3527328?comment=8297737
https://edstem.org/us/courses/43491/discussion/3527328?comment=8297737

Anonymous Kangaroo 1y #487aadc £ ENDORSED
its asking for the minimum clock period, not just the longest combinatorial path.

the formula for clock period is:

telock = tC’LK—TO—Q + tlongest—combinatorial + tsetup

so, you include the clock-to-q, which is the time needed to update the register output
starting from the rising edge of the clock

the explanation doesn't really separate these out into different components, so that's
probably why it was confusing. but yes, if you were just asked to calculate the longest
combinatorial path, it would be 1000 + 25 = 1025.

Anonymous Kangaroo 1y #487aada v Resolved

for sp23-mt-q4.1 can we do:
Iw rd imm(rs1)

srlird rd 24
basically we load a whole word into rd, but then shift right by 24 bits, effectively taking only the
upper 8 bits, which is a byte.

the only reason why i think it might not work is that it depends on the endianness of the system. if
the system is little-endian, then, the 8 bits at rs1 will be considered the least significant bits when
we do Iw rd imm(rs1).

this would mean that by shifting right, we would get rid of the 8 bits that we were supposed to
look at. (essentially, this alternative would take the 8 most significant bits of the word instead of
the 8 least significant bits).

edit: i guess this also wouldn't sign extend, but is my logic about the endianness correct?
D1

Minyi Liu 1y #487aafe
same question here &

Sam Xu sTaFF 1y #487abdd

Good question!

The reason why 1w rd imm(rsl) srli rd rd 24 does notworkis lw instruction must
takes in 4-byte aligned address. However, 1b and 1lbu insturctions take 1-byte aligned
address. If we try to 1bu an address not 4-byte aligned, such as 0x0000003, we cannot 1w
this address.

\2RTE

Anonymous Gerbil 1y #487aacc v Resolved

SU23-MT-Q4.2

should be add a0 s0 x0 right? not a0 t0 x0

https://edstem.org/us/courses/43491/discussion/3527328?comment=8298798
https://edstem.org/us/courses/43491/discussion/3527328?comment=8298798
https://edstem.org/us/courses/43491/discussion/3527328?comment=8296990
https://edstem.org/us/courses/43491/discussion/3527328?comment=8296990
https://edstem.org/us/courses/43491/discussion/3527328?comment=8303267
https://edstem.org/us/courses/43491/discussion/3527328?comment=8303267
https://edstem.org/us/courses/43491/discussion/3527328?comment=8305538
https://edstem.org/us/courses/43491/discussion/3527328?comment=8305538
https://edstem.org/us/courses/43491/discussion/3527328?comment=8295342
https://edstem.org/us/courses/43491/discussion/3527328?comment=8295342

sO stores the counter & t0 just stores 0 before you jump to loop_end
\2RTE

Eddy Byun sTaFF 1y #487aacd
#487fb
O

Anonymous Gerbil 1y #487aace

thank u sm!
@ .

Anonymous Octopus 1y #487aabf =+ Resolved
SU23-MT-Q2.2-3

For this question, if we assume that there was only memory allocated for the Library struct and
not for the users or books array, then that would mean that the address users holds is
garbage, right (since the memory lib points to hasn't been initialized yet)? If this is true, then
users points to some random memory location before initialization, that may or may not be
available to the user to use. Can we call realloc on such a memory location, or will we get an
error? In other words, can realloc only be used on memory addresses that the programmer
already has control over?

If so, is this why this question requires us to assume that users also has some unitialized block of
memory already created for the programmer to use?

Eddy Byun starF 1y #487aacf

Yea, you're right that in this question we never specified that users is NULL or has been
allocated. As a result, it contains garbage values. If you call realloc on garbage values/a
pointer that hasn't been allocated yet, you get undefined behavior. We realized this after the
midterm, which is why we awarded full credit for Q2.2, Q2.3, and Q2.4 to everyone.

Anonymous Turtle 1y #487abcb

In this case, if we assume that users is NULL, can we use malloc to initialize it?
@ YS

Anonymous Octopus 1y #487aabe @ v Resolved
SU23-MT-Q2.6

Hi, for this question, is calloc instead of malloc acceptable, where the second parameter is the
same as the parameter for malloc and the first parameter is just 1?
\2RTE

Noah Yin staFF 1y #487aaca

Yes, that should be acceptable.

Anonymous Reindeer 1y #487aaae = v Resolved

SP23-MT-Q1.2

The explanation for the solution to this question confuses me. Shouldn't an n-bit signed number
represent more unique numbers values than an n-bit two's-complement number? I'm asking this

https://edstem.org/us/courses/43491/discussion/3527328?comment=8296472
https://edstem.org/us/courses/43491/discussion/3527328?comment=8296472
https://edstem.org/us/courses/43491/discussion/3527328?comment=8251625
https://edstem.org/us/courses/43491/discussion/3527328?comment=8296538
https://edstem.org/us/courses/43491/discussion/3527328?comment=8296538
https://edstem.org/us/courses/43491/discussion/3527328?comment=8292742
https://edstem.org/us/courses/43491/discussion/3527328?comment=8292742
https://edstem.org/us/courses/43491/discussion/3527328?comment=8296659
https://edstem.org/us/courses/43491/discussion/3527328?comment=8296659
https://edstem.org/us/courses/43491/discussion/3527328?comment=8305076
https://edstem.org/us/courses/43491/discussion/3527328?comment=8305076
https://edstem.org/us/courses/43491/discussion/3527328?comment=8292705
https://edstem.org/us/courses/43491/discussion/3527328?comment=8292705
https://edstem.org/us/courses/43491/discussion/3527328?comment=8292753
https://edstem.org/us/courses/43491/discussion/3527328?comment=8292753
https://edstem.org/us/courses/43491/discussion/3527328?comment=8292335
https://edstem.org/us/courses/43491/discussion/3527328?comment=8292335

because | believe n-bit two's complement also represents NaN values, which aren't unique.
\2RTE

Sam Xu STAFF 1y #487aaba

n-bit two's complement does not represent NaN value.

n-bit signed system and n-bit two's complement system both can represent 2/n values.
However, in n-bit signed system, 0b000. .00 represent 0 and 0b100...00 represent-0,

which are the same value. Therefore n-bit signed system represent 1 less unique value than
2's complement

QD e

Anonymous Reindeer 1y #487aabb

oh wait, | somehow thought 2's-complement was floating point. sorry. thanks for the
clarification!
Q) e

Anonymous Ibis 1y #487aaab v Resolved

SP23-MT-Q2.3
Would sheet->pages+i also do the same thing as &sheet->pages[i]?

https://edstem.org/us/courses/43491/discussion/3527328?comment=8292562
https://edstem.org/us/courses/43491/discussion/3527328?comment=8292562
https://edstem.org/us/courses/43491/discussion/3527328?comment=8292568
https://edstem.org/us/courses/43491/discussion/3527328?comment=8292568
https://edstem.org/us/courses/43491/discussion/3527328?comment=8292161
https://edstem.org/us/courses/43491/discussion/3527328?comment=8292161

11:22 o T EA

Midi ues...) Page 6 of 17 CS 61C - Spring 2023

7 of 17

This may not be shared, uploaded, or distributed.

{Question 2 continued...)

(15 points) Fill in cheatsheet_init so that it matches the described behavior,

1 wvoid cheatsheet_init(Cheatsheet** ch, int student_id, char** contents) {
2 Cheatsheet® sheet = ;
Q2.1
3 sheet = student_id;
Q2.2
4 for (int i = 0; i < NUM_PAGES; i++) {
S Page™ page = H
Q2.3
6 page = ij;
Q2.4
7 page = H
Q2.5 Q2.6
8 strcpy (page , contents[i]);
Q2.7
9 sheet += strlen(contents[i]);
Q2.8
10 1
11 .
Q2.9
12 }
Solution:

02.1: calloc(l, sizeof(Cheatsheet)

Note that we need to calloc in this case in order to set total_length equal to 0.
02.2: ->student_id

0Q2.3: &sheet->pages[i]

When we allocate memory on the heap for a Cheatsheet, we allocate memory for a Page array
of size NUM_PAGES. Therefore, we already allocated memory for each Page. In order to get the
correct Page, we need to index into the correct Page in our Cheatsheet (sheet->pages[i]). To
get the pointer to this Page, we will use the & to get a pointer to this Page (&sheet->pages[i])

Q2.4: ->num
Q2.5: ->data
Q2.6: malloc(sizeof(char) * (strlen(contents[i]) + 1))

Note that we allocated memory for a char pointer but we now need to actually allocate memory

v tha ctving itcalf Alen e+wlan Arnacn't rancidar tha mull_tarminatar en vra maad ta add 1

LR LI SLLLINE ILOL AL £ MO, S LE LS WL S0 L LI LR SR L BRRLIEELL Ay DM WYL BRL L LU G i

Midterm (Question 2 continues...) Page 7 of 17 CS61C - Spring 2023

This content is protecied and may not be shared, uploaded, or distributed,

IS il nce B aneniblenasnd %

@ inst.eecs.berkeley.edu

Noah Yin sTarF 1y #487aach
Yes, sheet->pages+i would do the same thing as &sheet->pagesli].

In sheet->pages + i, you are first getting the pages pointer from sheet then using pointer
arithmetic to increment pages by i * size of Page, giving a pointer to the i-th element.

In &sheet->pages[i], you are using array indexing to access the i-th pages element, then
using the & operator to get a pointer to that i-th element.

Anonymous Weasel 1y #487aaef
&(sheet->pages[i]) would also be correct, right?
Q) e

Noah Yin starF 1y #487aafb
“ Replying to Anonymous Weasel

Yeah that is equivalent to &sheet->pagesli].
\2TH

Anonymous Heron 1y #487fea = v Resolved
042 (5 points) Translate the j loop instruction under the skip label to hexadecimal. Assume that

every line in the above code is filled with exactly one instruction (or pseudo-instruction that

expands to one instruction).

Solution: 0xFDDFFOGF

SU23-MT-Q4.2
Why would the third bit be D? The 2's complement representation of -36 is

11111111111111011100

The third D is essentially the imm[3:1] + imm[1] so shouldn't the binary rep of the third MSB be
0b1001 = 0x9 making the total answer to be OxFD9FFO6F

@ .ee

@ Andrew Liu sTarF 1y #487fec

Yep, so we have

https://edstem.org/us/courses/43491/discussion/3527328?comment=8292794
https://edstem.org/us/courses/43491/discussion/3527328?comment=8292794
https://edstem.org/us/courses/43491/discussion/3527328?comment=8301996
https://edstem.org/us/courses/43491/discussion/3527328?comment=8301996
https://edstem.org/us/courses/43491/discussion/3527328?comment=8302169
https://edstem.org/us/courses/43491/discussion/3527328?comment=8302169
https://edstem.org/us/courses/43491/discussion/3527328?comment=8301996
https://edstem.org/us/courses/43491/discussion/3527328?comment=8291515
https://edstem.org/us/courses/43491/discussion/3527328?comment=8291515
https://edstem.org/us/courses/43491/discussion/3527328?comment=8291770
https://edstem.org/us/courses/43491/discussion/3527328?comment=8291770

-36 = 1 1111 1111 1111 1101 1100

Then, the immediate field should be:

imm[20] =1 ©1 1111 1111 1111 1101 1100
imm[16:1] = 111 1161 116 : 1 1111 1111 1111 1161 1100
imm[11] =1 © 1 1111 1111 1111 1101 1100
imm[19:12] = 1111 1111 11111 1111 1111 1101 1100

Stringing this together, we have
imm[20[10:1[11:19:12] = (0) <= dmplicit bc j type
Which translates to oxFDD. ..

| think the error you made was that you highlighted imm[2:0] and not imm[3:1] in your
explanation.
t’\‘j

Anonymous Duck 1y #487fcd = v Resolved

For question 2.6, could you do sizeof(contents[i]) instead of multiplying by the num of characters
and the way the solution did it?

Mira Bali sTarF 1y #487fda

Could you also specify the exam where this question was asked?
Y

@ Andrew Liu sTarF 1y #487fef

No, since content is of type charx*,so contents[i] is of type char*, meaning that trying
to get sizeof(contents[i]) givesyou sizeof(charx) != strlen(contents[i]) . (unless
you have a length 4 string on a 32-bit system)

You would be able to do this if you knew the size of the array beforehand (e.g. sizeof
(char*) = 4, but sizeof(char[12]) = 12)
@ oee

Anonymous Ibis 1y #487fcc =« Resolved

SU23-MT-Q2
Why do we not need to malloc borrow_books before passing it into memset?

https://edstem.org/us/courses/43491/discussion/3527328?comment=8289640
https://edstem.org/us/courses/43491/discussion/3527328?comment=8289640
https://edstem.org/us/courses/43491/discussion/3527328?comment=8291311
https://edstem.org/us/courses/43491/discussion/3527328?comment=8291311
https://edstem.org/us/courses/43491/discussion/3527328?comment=8291829
https://edstem.org/us/courses/43491/discussion/3527328?comment=8291829
https://edstem.org/us/courses/43491/discussion/3527328?comment=8289227
https://edstem.org/us/courses/43491/discussion/3527328?comment=8289227

Solution:

1 void init_users(Library® lib, char** user_ids) {

2 int i = 0;

3 while (user_ids[i] != NULL) {

4 lib->users = realloc(lib->users, sizeof(User) * (i + 1));
5 User* cur_user = &lib->users[i];
6

7

B

-

cur_user->user_id = malloc((strlen(user_ids[i]) + 1) * sizeof(char)]

strcpy(cur_user->user_id, user_ids[i]);

memset (cur_user->borrowed_books, 0,
MAX_BORROWS * sizeof(Book));

Midterm (Question 2 conlinues...) Page 6 of 18 CS 61C = Summer 2023

This comtent is protected and may not be shared, uploaded, or distribufted.

(Question 2 continued. .)

9 i+
10 }
11 lib->users_len = i - 1;
12 }

Line 11 should have been i, not i - 1. This was given as a clarification during the exam, and no
grading adjustment has been made.
It was ambiguous whether or not that memory was allocated for the Library struct pointer’s

members, such as users. Our solution relies on users being a pointer returned by malloc. Asa
result, we've awarded full credit for 02.2, 023, and Q2.4 to everyone.

O e

®

Andrew Liu sTaFF 1y #487ffb

Borrowed books is an array type of Book* with length BORROWED_BOOKS, so there's space in
the struct of size sizeof(Book*) * BORROWED_BOOKS, which is allocated on line 4.

@ oo

Anonymous Ibis 1y #487fff

If 'm understanding correctly, does space for the entire array of Book*'s get allocated
when the size of the struct is malloc’ed? While if the type was Book**, we would have to
malloc separately to have the same effect?
@ .o

Anonymous Ibex 1y #487fcb =~ v Resolved
SU23-MT-Q4.1

What is the solution to this question? It doesn't seem to be in the solutions PDF.

https://edstem.org/us/courses/43491/discussion/3527328?comment=8291961
https://edstem.org/us/courses/43491/discussion/3527328?comment=8291961
https://edstem.org/us/courses/43491/discussion/3527328?comment=8292042
https://edstem.org/us/courses/43491/discussion/3527328?comment=8292042
https://edstem.org/us/courses/43491/discussion/3527328?comment=8288946
https://edstem.org/us/courses/43491/discussion/3527328?comment=8288946

Q4 RISC-V, RISC-XVI, RISC-VIII (25 points)
A wondrous sequence of positive integers is defined as follows: If n is even, then the next number is 7.
Otherwise, the next number is 3n + 1.

Q4.1 (2 points) We want to create a pseudoinstruction to check whether a number is odd or not. This
instruction, written is_odd rd rs1i, will put the value 1 in rd if the value in rs1 is odd, and the
value 0 otherwise. What is the RISC-V instruction that is_odd rd rs1 would translate to? You
may only use one instruction, and you may not use any pseudoinstructions.

Note: Your solution may include rd and rs1.

Mira Bali starr 1y #487fdb

Oops, | think | attached the answers for 4.2 essentially. | would just check the post that Eddy
linked below!

Eddy Byun sTarF 1y #487fdc
#487bd

Anonymous Manatee 1y #487fbf = v Resolved
SU23-MT-Q1.3:

What does it mean by, in bias notation with bias = 227, we only need one bit to represent 2272
1

@ Andrew Liu sTAFF 1y #487feb

Suppose we have a 1 bit number with bias 22", Then, ebe =0 + 227, and ob1 =1 + 22",

Anonymous Manatee 1y #487fbc = v Resolved
SU23-MT-Q2.11:

Why is it MAX_BORROWS * sizeof(Book) and not MAX_BORROWS * sizeof(Bookx) ?Isn't Bookx
borrowed_books[MAX_BORROWS] an array of pointers?

Anonymous Mole 1y #487fca
+1, I thought that borrowed_books is an array of pointers, and wrote MAX_BORROWS * 4,

Mira Bali sTarF 1y #487fee
#487aaad

Mira Bali sTarF 1y #487fed

Borrowed_books is an array of Book objects, so essentially a pointer to Book objects. The
Book* specifies that we have a pointer that points to a Book object(s). This is similar to how
int* refers to a pointer to an int. So, when you have an int array, to malloc size for it, you
would malloc the "# of elements in the array * sizeof{(int)"; that's also why we do
"MAX_BORROWS * sizeof(Book)" here.

https://edstem.org/us/courses/43491/discussion/3527328?comment=8291400
https://edstem.org/us/courses/43491/discussion/3527328?comment=8291400
https://edstem.org/us/courses/43491/discussion/3527328?comment=8291410
https://edstem.org/us/courses/43491/discussion/3527328?comment=8291410
https://edstem.org/us/courses/43491/discussion/3527328?comment=8217872
https://edstem.org/us/courses/43491/discussion/3527328?comment=8288773
https://edstem.org/us/courses/43491/discussion/3527328?comment=8288773
https://edstem.org/us/courses/43491/discussion/3527328?comment=8291602
https://edstem.org/us/courses/43491/discussion/3527328?comment=8291602
https://edstem.org/us/courses/43491/discussion/3527328?comment=8288683
https://edstem.org/us/courses/43491/discussion/3527328?comment=8288683
https://edstem.org/us/courses/43491/discussion/3527328?comment=8288855
https://edstem.org/us/courses/43491/discussion/3527328?comment=8288855
https://edstem.org/us/courses/43491/discussion/3527328?comment=8291795
https://edstem.org/us/courses/43491/discussion/3527328?comment=8291795
https://edstem.org/us/courses/43491/discussion/threads/487aaad
https://edstem.org/us/courses/43491/discussion/3527328?comment=8291786
https://edstem.org/us/courses/43491/discussion/3527328?comment=8291786

Anonymous Manatee 1y #487ffa

| believe that there is a distinction between Bookx borrowed_books[MAX_BORROWS]

and Book borrowed_books[MAX_BORROWS] , just like there is a distinction between +intx
arr[5] and 4int arr[5] .Intheint case, the former would be an array of 5 int
pointers (i.e. arr[0] would be an int* type and point to an int), while the latter would be
an array of 5 ints (i.e. arr[0] would be an int type). | scoured the web and seems like this
is the case. If we apply the same logic to the Book case, the former should be an array
of pointers to Books while the latter simply an array of Books.

In this case, if we are performing a malloc on int* arr[5], we would have to allocate
space for 5 pointers, i.e. malloc(sizeof(intx) * 5) .Forintarr[5], we would allocate
space for 5 ints, i.e. malloc(sizeof(int) * 5) .The same logic applies for Books,
hence we are malloc-ing using sizeof (Bookx) . Is there anything wrong with my logic?
Not sure why the answer key says sizeof (Book) .

@ s

Mira Bali sTAFF 1y #487aaaa
““ Replying to Anonymous Manatee

Oh | see what you mean, you're right. Since in this case, we do have an array of Book*.
Let me look into it and see if this is a memset() thing.

@ .

Mira Bali sTafFF 1y #487aaad

<+ Replying to Mira Bali

Ok so | checked and turns out that this was a typo, we should have "MAX_BORROWS *
sizeof(Book*)" here. Sorry for the confusion!

Qe

Anonymous Manatee 1y #487fbb = v Resolved
SU23-MT-Q2.13:

Is saying lib->users][i] is a User struct but not a pointer a valid solution?

@ Andrew Liu sTarF 1y #487ffc
Yes
QD e

Anonymous Manatee 1y #487fba = v/ Resolved

SU23-MT-Q6.4:

Lecture 17 states that we can build a subtractor by simply performing a NOT on B and passing a 1
into the input C_0. In essence we only need one adder. Why does the answer key state that we
need two?

https://edstem.org/us/courses/43491/discussion/3527328?comment=8291880
https://edstem.org/us/courses/43491/discussion/3527328?comment=8291880
https://edstem.org/us/courses/43491/discussion/3527328?comment=8292116
https://edstem.org/us/courses/43491/discussion/3527328?comment=8292116
https://edstem.org/us/courses/43491/discussion/3527328?comment=8291880
https://edstem.org/us/courses/43491/discussion/3527328?comment=8292224
https://edstem.org/us/courses/43491/discussion/3527328?comment=8292224
https://edstem.org/us/courses/43491/discussion/3527328?comment=8292116
https://edstem.org/us/courses/43491/discussion/3527328?comment=8288666
https://edstem.org/us/courses/43491/discussion/3527328?comment=8288666
https://edstem.org/us/courses/43491/discussion/3527328?comment=8291987
https://edstem.org/us/courses/43491/discussion/3527328?comment=8291987
https://edstem.org/us/courses/43491/discussion/3527328?comment=8288641
https://edstem.org/us/courses/43491/discussion/3527328?comment=8288641

Extremely Clever Subtractor: A-B = A + (-B)

‘Ev\—\ 0\“—\ CLO

XOR(x,y)

overflow XOR serves as
conditional inverter!

Combinational Logic Blocks (20)

Berkeley

Anonymous Heron 1y #487fdf

curious as well

@ Andrew Liu sTare 1y #487ffd

We assumed adders without carry inputs on the exam.

Anonymous Manatee 1y #487aaac

Can we always make this assumption? Or will it be specified?

Justin Yokota sTaFF 1y #487abea
4 Replying to Anonymous Manatee

This specifically is how you might create a combined adder-subtractor block (which
MAY be the adder block we use, but may also not be). In the mentioned exam, we just
gave you an adder block; you only know that it takes in two inputs and outputs their
sum, and your circuit should be able to work regardless of how the adder works.

In general, if we black-box something, you should be able to make it work regardless of
how that black box is implemented.

Anonymous Mandrill 1y #487faf =+ Resolved
SP23-MT-Q2

When a question says the output "must persist through function calls," what does this mean? Is it
implying that we must allocate space?

https://edstem.org/us/courses/43491/discussion/3527328?comment=8291465
https://edstem.org/us/courses/43491/discussion/3527328?comment=8291465
https://edstem.org/us/courses/43491/discussion/3527328?comment=8291993
https://edstem.org/us/courses/43491/discussion/3527328?comment=8291993
https://edstem.org/us/courses/43491/discussion/3527328?comment=8292196
https://edstem.org/us/courses/43491/discussion/3527328?comment=8292196
https://edstem.org/us/courses/43491/discussion/3527328?comment=8305999
https://edstem.org/us/courses/43491/discussion/3527328?comment=8305999
https://edstem.org/us/courses/43491/discussion/3527328?comment=8292196
https://edstem.org/us/courses/43491/discussion/3527328?comment=8288489
https://edstem.org/us/courses/43491/discussion/3527328?comment=8288489

Eddy Byun starF 1y #487fbd

It implies that we must allocate space on the heap since our stack frame gets deleted when
we return from a function

Anonymous Armadillo 1y #487eff = v Resolved
SP23-MT-Q2.10

In general, do global variables in the form int x = some integer live in the code?

Q2 1Can’t C My Cheatsheet; (24 points)
1 #define NUM_PAGES 8
2
3 typedef struct Page {
4 int num;
5 char* data;
6 } Page;
7
8 typedef struct Cheatsheet {
9 int student_id;
10 int total_length;
11 Page pages[NUM_PAGES];
12 } Cheatsheet;

The question asked where num_pages lives in memory and the answer was code
D e

Ekansh Agrawal sTarF 1y #487fac

num_pages is a macro which means that the compiler basically replaces every invocation of
that variable with the value that is defined, in this case 8. The definition lives within the code
segment.

Anonymous Armadillo 1y #487fad

ok thanks, what about something like int x = 82 Where would x live if this line was a
global variable?
@ eee

Ekansh Agrawal starr 1y #487fae

4+ Replying to Anonymous Armadillo

It would live in the static memory section (often times this is a shared memory space
with the code section).

@ cee

Anonymous Chicken 1y #487eef =+ Resolved

https://edstem.org/us/courses/43491/discussion/3527328?comment=8288721
https://edstem.org/us/courses/43491/discussion/3527328?comment=8288721
https://edstem.org/us/courses/43491/discussion/3527328?comment=8286732
https://edstem.org/us/courses/43491/discussion/3527328?comment=8286732
https://edstem.org/us/courses/43491/discussion/3527328?comment=8286993
https://edstem.org/us/courses/43491/discussion/3527328?comment=8286993
https://edstem.org/us/courses/43491/discussion/3527328?comment=8287028
https://edstem.org/us/courses/43491/discussion/3527328?comment=8287028
https://edstem.org/us/courses/43491/discussion/3527328?comment=8287166
https://edstem.org/us/courses/43491/discussion/3527328?comment=8287166
https://edstem.org/us/courses/43491/discussion/3527328?comment=8287028
https://edstem.org/us/courses/43491/discussion/3527328?comment=8285746
https://edstem.org/us/courses/43491/discussion/3527328?comment=8285746

Q3.3 (5 points) Consider the floating point number 7.625. What is the largest (closest to 4-0c) possible
value we can represent by modifying a single bit of the floating point representation of this number?

Write the binary representation of each component of your answer.

Solution: Sign bit: 0b0

Exponent bits: 0b11001

Mantissa bits: 0b1110100000

7.625 = 61/8 =61 x 273 = 0b111101 x 272 = (0b1.11101 x 2°) x 272 = 0b1.11101 x 22
Sign bit: 0 (positive). We know flipping the sign bit will just make the number negative, which
isn’t helpful.

Mantissa bits: 0b11101 00000. To increase the number, the most-significant bit we could flip
is the 0 to a 1, which would produce 0b1.11111 x 22. The difference between this number and
the original number is 0b0.00010 x 22 = 0b0.01 = 1/4. Flipping any of the less-significant
0s would increase the number by even less.

Exponent bits: 2 — (—15) = 17, which in unsigned 5-bit binary is 0b10001. We can increase
the number by flipping the most-significant 0 to a 1, which would produce 0b11001.

The overall solution is to leave the sign and mantissa bits unchanged, and flipping the most-
significant zero bit in the exponent.

Can someone give a bit more detail on how they converted 7.625 into floating point. The exam's
solution makes no sense to for me.

Eddy Byun sTarF 1y #487efe

Have you taken a look at this: #487cca?

Anonymous Stork 1y #487eeb =+ Resolved
SP23-MT-Q6.4

If we treat the substractor as a black box, then a-b =a + (flip b) + 1. Can we change it to (a+1) +
(flip b)? Now the longest path only has two adders, so the maximum delay of an adder can be
17.5ps instead of 15 ps.

Eddy Byun starF 1y #487fbe

Yea, 17.5 was also an acceptable solution for this problem.
D eee

Anonymous Gaur 1y #487edc | v Resolved

sp23-mt-q1.6

converting jal s3 588

My work:

opcode: 1101111

rd: 11001

label =imm =588 = 1001001100

| left padded the label with zeros until it was 20 bits.

https://edstem.org/us/courses/43491/discussion/3527328?comment=8286673
https://edstem.org/us/courses/43491/discussion/3527328?comment=8286673
https://edstem.org/us/courses/43491/discussion/3527328?comment=8268606
https://edstem.org/us/courses/43491/discussion/3527328?comment=8285352
https://edstem.org/us/courses/43491/discussion/3527328?comment=8285352
https://edstem.org/us/courses/43491/discussion/3527328?comment=8288756
https://edstem.org/us/courses/43491/discussion/3527328?comment=8288756
https://edstem.org/us/courses/43491/discussion/3527328?comment=8284217
https://edstem.org/us/courses/43491/discussion/3527328?comment=8284217

final entire binary:
imm[20]10:1|11]19:12] rd opcode

01001001100 0 0O000000 11001 1101111
0x49800CEF
Correct Answer: 0x24CO09EF

Where am | going wrong?

Eddy Byun sTarF 1y #487efa
#487aae

Anonymous Badger 1y #487ecf =+ Resolved

Solution:

1 num_steps:
Prologue
Omitted
2 addi s0 x0 0
3 loop_start:
4 addi t0 x0 1
5 beq a0 t0 loop_end
6 jal ra next_number
7 addi s0 sO 1
8 j loop_start
9 loop_end:
10 add a0 t0 x0
Epilogue
Omitted
11 jr ra

Grading: Credit was given for all equivalent answers, with points deducted for using s registers
or breaking calling convention.

for the loop_end part, shouldn't it be add a0 s0O x0 instead of t0 since s0 is the counter for number
of steps taken?

Eddy Byun sTarF 1y #487ede

Yea, this is a typo in the solution. It should be add a® s x0 or an equivalent instruction

Anonymous Newt 1y #487ece = v/ Resolved

There is an error in the solutions for the alternative answer on SP23-MT-Q2.13.
The given alternative solution is:

(Out of scope) Mentioning how comparing size_t to an int could lead to a security
vulnerability where the comparison on line 6 would fail, specifically if how
strlen(new_data) returned a number where, if represented in binary, had a leading

https://edstem.org/us/courses/43491/discussion/3527328?comment=8285796
https://edstem.org/us/courses/43491/discussion/3527328?comment=8285796
https://edstem.org/us/courses/43491/discussion/3527328?comment=8252531
https://edstem.org/us/courses/43491/discussion/3527328?comment=8283104
https://edstem.org/us/courses/43491/discussion/3527328?comment=8283104
https://edstem.org/us/courses/43491/discussion/3527328?comment=8284958
https://edstem.org/us/courses/43491/discussion/3527328?comment=8284958
https://edstem.org/us/courses/43491/discussion/3527328?comment=8283050
https://edstem.org/us/courses/43491/discussion/3527328?comment=8283050
https://inst.eecs.berkeley.edu/~cs61c/sp23/pdfs/exams/sp23-midterm-sols.pdf#page=9

1. This solution is out of scope for this class, and was only deemed correct if the
student’s answer got every aspect of it correct

But this justification is incorrect. There is no situation where the code could lead to a security bug
because signed integers are converted to unsigned integers before comparison (assuming
sizeof(size_t) >= sizeof(int) ,and MAX_STR_LEN is non-negative.

To be precise, here is the relevant portion of the standard:

> [When] both operands [to a relational operator] are integers, both operands undergo integer
promotions (see below); then, after integer promotion, one of the following cases applies:

So there are three cases:

1.If size_t issmaller than -int, itis promoted to an int . Then we have an integer vs integer
comparison, which is logically correct.

2.If size_t is equal to anint, then this bullet applies, and 4int is converted to unsigned int .So
MAX_STR_LEN is promoted to unsigned int .Since MAX_STR_LEN is non-negative, the
comparison is again logically correct.

3.If size_t is greater than an int, then MAX_STR_LEN is promoted to size_t, and again the
comparison is logically correct since MAX_STR_LEN is non-negative.

\2RTE

Anonymous Swan 1y #487ecc = v Resolved

SP23-MT-Q1.10:

Since this is little endian i found the corresponding addresses of the word hello!! to make it !lolleh.
| thought the str[1] is the first element and would return the address of 0. Why does the answer
key return the address of the letter e?

2 e

Anonymous Duck 1y #487faa
i'm stuck on this as well, especially since the next part acts treats it differently with it having
/nllo as the 0 element. why is that? | would appreciate a detailed response, thanks!

Justin Yokota starF 1y #487fdd

Arrays don't change the order of their elements; only the order of the bytes within each
element get reversed. Since each char is a single byte, that doesn't affect the order of the
bytes in the string.

\2RTE

Anonymous Manatee 1y #487ecb = v/ Resolved

SP23-MT-Q1.3

Does gcc only act as the compiler or is it the compiler, assembler, and linker all in one?

Catherine Van Keuren sTAFr 1y #487eda

It's the compiler, assembler and linker.
\2RTE

https://en.cppreference.com/w/c/language/conversion#:~:text=Otherwise%2C%20both%20operands%20are%20integers.%20Both%20operands%20undergo%20integer%20promotions%20(see%20below)%3B%20then%2C%20after%20integer%20promotion%2C%20one%20of%20the%20following%20cases%20applies%3A
https://en.cppreference.com/w/c/language/conversion#:~:text=Otherwise%2C%20both%20operands%20are%20integers.%20Both%20operands%20undergo%20integer%20promotions%20(see%20below)%3B%20then%2C%20after%20integer%20promotion%2C%20one%20of%20the%20following%20cases%20applies%3A
https://en.cppreference.com/w/c/language/conversion#:~:text=Otherwise%2C%20both%20operands%20are%20integers.%20Both%20operands%20undergo%20integer%20promotions%20(see%20below)%3B%20then%2C%20after%20integer%20promotion%2C%20one%20of%20the%20following%20cases%20applies%3A
https://en.cppreference.com/w/c/language/conversion#:~:text=Otherwise%2C%20both%20operands%20are%20integers.%20Both%20operands%20undergo%20integer%20promotions%20(see%20below)%3B%20then%2C%20after%20integer%20promotion%2C%20one%20of%20the%20following%20cases%20applies%3A
https://en.cppreference.com/w/c/language/conversion#:~:text=Otherwise%2C%20both%20operands%20are%20integers.%20Both%20operands%20undergo%20integer%20promotions%20(see%20below)%3B%20then%2C%20after%20integer%20promotion%2C%20one%20of%20the%20following%20cases%20applies%3A
http://else,%20both%20operands%20undergo%20implicit%20conversion%20to%20the%20unsigned%20type%20counterpart%20of%20the%20signed%20operand's%20type./
https://en.cppreference.com/w/c/language/conversion#:~:text=If%20the%20unsigned%20type%20has%20conversion%20rank%20greater%20than%20or%20equal%20to%20the%20rank%20of%20the%20signed%20type%2C%20then%20the%20operand%20with%20the%20signed%20type%20is%20implicitly%20converted%20to%20the%20unsigned%20type.
https://edstem.org/us/courses/43491/discussion/3527328?comment=8282587
https://edstem.org/us/courses/43491/discussion/3527328?comment=8282587
https://edstem.org/us/courses/43491/discussion/3527328?comment=8286905
https://edstem.org/us/courses/43491/discussion/3527328?comment=8286905
https://edstem.org/us/courses/43491/discussion/3527328?comment=8291427
https://edstem.org/us/courses/43491/discussion/3527328?comment=8291427
https://edstem.org/us/courses/43491/discussion/3527328?comment=8282542
https://edstem.org/us/courses/43491/discussion/3527328?comment=8282542
https://edstem.org/us/courses/43491/discussion/3527328?comment=8283750
https://edstem.org/us/courses/43491/discussion/3527328?comment=8283750

Anonymous Manatee 1y #487eca = v Resolved

SP23-MT-Q2.1:

Can we always use calloc in place of malloc?

Eddy Byun starF 1y #487edd

Yes, the only difference between calloc and malloc isthat calloc is going to zero-out the
memory that you allocated.

For this question, calloc was the only answer that got full credit.
Q) e

Anonymous Antelope 1y #487ebe =+ Resolved
SP23-MT2-Q2.10-2.12

Hi, I am pretty confused why sheet would be on the stack instead of the heap since it is a pointer?
| thought pointers were supposed to be on the heap? And also *sheet seems like it would point
inside a struct which | thought would be on the stack?

Q2.10 (2 points) NUM_PAGES

O (A) Stack O (B) Heap @ (C)Code O (D) Data/Static
Q2.11 (2 points) sheet

@ (A) Stack O (B) Heap QO (C) Code QO (D) Data/Static
2.12 (2 points) *sheet

O (A) Stack @ (B) Heap QO (C) Code O (D) Data/Static

Eddy Byun sTarF 1y #487eea

calloc and malloc will allocate memory in the heap and then return a pointer to the
allocated memory on the heap. sheet itself is a pointer to the Cheatsheet that we
allocated, and it's a local variable on the stack. Dereferencing sheet (xsheet)is going to be
the Cheatsheet that we allocated on the heap.

D1

Anonymous Antelope 1y #487aabd

thank you :)
@ voe

Anonymous Sardine 1y #487ebc =« Resolved

SP23-MT2-Q2.1 - Q2.4

For question 2.1, | am wondering why we made a whole new struct pointer, if we are already
given ch?

My initial thought was to do Cheatsheet* sheet = &ch

For Q2.4, | am wondering why we didn't put parenthesis around the values and the ampersand
outside of it: &(sheet->pages[i])?

https://edstem.org/us/courses/43491/discussion/3527328?comment=8282527
https://edstem.org/us/courses/43491/discussion/3527328?comment=8282527
https://edstem.org/us/courses/43491/discussion/3527328?comment=8284896
https://edstem.org/us/courses/43491/discussion/3527328?comment=8284896
https://edstem.org/us/courses/43491/discussion/3527328?comment=8281649
https://edstem.org/us/courses/43491/discussion/3527328?comment=8281649
https://edstem.org/us/courses/43491/discussion/3527328?comment=8285249
https://edstem.org/us/courses/43491/discussion/3527328?comment=8285249
https://edstem.org/us/courses/43491/discussion/3527328?comment=8292676
https://edstem.org/us/courses/43491/discussion/3527328?comment=8292676
https://edstem.org/us/courses/43491/discussion/3527328?comment=8280973
https://edstem.org/us/courses/43491/discussion/3527328?comment=8280973

Q2.1: calloc(l, sizeof(Cheatsheet)
Note that we need to calloc in this case in order to set total_length equal to 0.

Q2.2: ->student_id

Q2.3: &sheet->pages[i]

Eddy Byun sTafFF 1y #487eec

For 2.1: "It should create a well-formed Cheatsheet with the following properties, and save a
pointer to that Cheatsheet at the address ch points to" - we need to allocate memory for a
Cheatsheet and store this pointer at the address ch points to.

&ch returns the address of ch, which would be of type Cheatsheet*xx

2.4: https://en.cppreference.com/w/c/language/operator_precedence - the order of
operands state that we firstdo -> and [] and comes the & operand

O

Anonymous Sardine 1y #487eed

Thank you. | was not aware about the order of operands either.
O .

Eddy Byun sTarF 1y #487eee
<+ Replying to Anonymous Sardine

Yea, you can also do &(sheet->pages[i])
@ .

Anonymous Spoonbill 1y #487eaf = v Resolved
SP23-MT-Q1.11

does str[1] contain '0!\0' because str[0] is going to contain the fist 4 letters ('hell')?

Justin Yokota starF 1y #487ebf

Yes, since stris being interpreted on that line as an int*

Anonymous Octopus 1y #487eac = v Resolved
Hi,

For SP23-MT1-Q4.3, RISC-V labels count as lines? For example, does temp_label: count as its
own line, and do we have to account for it when incrementing the PC?

Eddy Byun sTarF 1y #487eba

#488cec

https://edstem.org/us/courses/43491/discussion/3527328?comment=8285385
https://edstem.org/us/courses/43491/discussion/3527328?comment=8285385
https://en.cppreference.com/w/c/language/operator_precedence
https://edstem.org/us/courses/43491/discussion/3527328?comment=8285416
https://edstem.org/us/courses/43491/discussion/3527328?comment=8285416
https://edstem.org/us/courses/43491/discussion/3527328?comment=8285688
https://edstem.org/us/courses/43491/discussion/3527328?comment=8285688
https://edstem.org/us/courses/43491/discussion/3527328?comment=8285416
https://edstem.org/us/courses/43491/discussion/3527328?comment=8279961
https://edstem.org/us/courses/43491/discussion/3527328?comment=8279961
https://edstem.org/us/courses/43491/discussion/3527328?comment=8281685
https://edstem.org/us/courses/43491/discussion/3527328?comment=8281685
https://edstem.org/us/courses/43491/discussion/3527328?comment=8278295
https://edstem.org/us/courses/43491/discussion/3527328?comment=8278295
https://edstem.org/us/courses/43491/discussion/3527328?comment=8280417
https://edstem.org/us/courses/43491/discussion/3527328?comment=8280417
https://edstem.org/us/courses/43491/discussion/3527329?comment=8280410

Anonymous Reindeer 1y #487ddb = + Resolved
Sp23-MT-Q1.11

Shouldn't the answer be 0x0021216F instead of 0x00212165 since '0' is 0x6F in ASCIl and not
0x657?

D1

Jero Wang sTarF 1y #487dea
Yes, that's a typo, sorry.
D1

Anonymous Butterfly 1y #487ecd

Could you please explain why we skip 'I', 'I', and '0" and go straight to '!'?
@ eee

Anonymous Chamois 1y #487dda = v Resolved
su22-MT2-q4

add_even_numbers:

addi t0, x0, O # set t0 to be the running sum
loop:
beq al x0 end
1w t1 0Ca0) # set tl to be the number in the array

andi t2 tl 1
beq t2 x0 pass
add t0 t0 t1
pass:
addi a0 a0 4
addi al al -1
j loop
end:
ret

How come for the line add t0 t0 t1, tO isn't garbage once j loop is called? We never stored it to the
stack.

@ Andrew Liu sTAFF 1y #487ddd

loop is a label to help organize our function, not a function call. (note the lack of a al as
well)

Anonymous Chamois 1y #487dcb =~ v Resolved

https://edstem.org/us/courses/43491/discussion/3527328?comment=8273141
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273141
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273352
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273352
https://edstem.org/us/courses/43491/discussion/3527328?comment=8283021
https://edstem.org/us/courses/43491/discussion/3527328?comment=8283021
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272989
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272989
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273239
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273239
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272837
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272837

Q1.6 (3 points) Which program initializes registers to their default value?
O (A) Assembler
O (B) Compiler
O (C) Interpreter
O (D) Linker

@ (E) None of the above

Solution: None of these choices actually start and run the program, so they don’t initialize
registers.

su22-mt-q1.6, i was wondering what choice would actually start and run the program?

Sam Xu sTaFF 1y #487dcd

loader starts and runs the program
\2RTE

Anonymous Penguin 1y #487cfd = v Resolved
su23-mt-g2.13

Would this be a valid justification for "No"?

The user_id string's memory for each user was malloc-ed but not deallocated before this user's
memory was freed, leading to memory leak.

O

Eddy Byun sTarF 1y #487ddf
Yes, this was another error in the function, and we accepted this answer as well.
D1

Anonymous Armadillo 1y #487cfa v Resolved

conceptual question that | see on pretty much every test: whats the real difference between static
and code that differentiates them? | was told in riscv, something is code if theyre an immediate
but | am still confused about their true distinction

Jero Wang sTarF 1y #487dec

In most cases, code is executable, and static is not executable. Code generally contains the
program itself, while static contains any data the program may need to use during its
lifecycle.

In RISC-V, the immediate is code because it's literally embedded in the instruction itself. Take
addi a0 x0 1, it gets written to the executable as 0x00100513, and the immediate is within
the code. However, if you have something like a string literal (you can't really put a string in
an instruction), you need to store the string literal somewhere else (like the data segment).

Anonymous Armadillo 1y #487ead
thanks!

https://edstem.org/us/courses/43491/discussion/3527328?comment=8272889
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272889
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272490
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272490
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273302
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273302
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272157
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272157
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273374
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273374
https://edstem.org/us/courses/43491/discussion/3527328?comment=8278641
https://edstem.org/us/courses/43491/discussion/3527328?comment=8278641

Qe

Anonymous Armadillo 1y #487eae

Does executable mean the same thing as read-write, and not executable = read only?
@ eee

Anonymous Cheetah 1y #487cef = v Resolved
SP23-MT2-Q4.1
Why use s0? From my perspective other registers like tO could also be the counterpart. Is it only

because sO was shown up in the context?

Eddy Byun sTarF 1y #487dca

Is this from the SU midterm? You need to use s0 because it was shown up in the context.
\2TE

Anonymous Cod 1y #487ced = v/ Resolved
SP23-MT-Q1.7

How was this simplified?

Q1.7 (3 points) Write a Boolean expression that evaluates to the truth table below. You may use at most
2 Boolean operations. ~ (NOT), | (OR), & (AND) each count as one operation. We will assume
standard C operator precedence, so use parentheses when uncertain.

W Y |Z|Out
0|00 1
0|01 1
0|1/0| 0
0|11 1
1(0{0| 1
1(0]1 1
1(1]0| 0O
1 (1)1 1

Solution: ~Y | Z

Other solutions may exist.

Eddy Byun sTtaFF 1y #487dbd
IWHIY*IZ + IW*IY*Z + IW*Y*Z + WIY* IZ + WIY*Z + WrY*Z =

WIY * (1IZ+Z)+YZ * (IW + W) +WIY (IZ + 2)

=IWIY +YZ + WIY

=1IY (IW+W) +YZ

=lY+YZ

IY = 1Y + IYZ using the absorption law; we can plug this into 1Y
=IY+IYZ+YZ

= IY+Z*1Y +Y)

https://edstem.org/us/courses/43491/discussion/3527328?comment=8278768
https://edstem.org/us/courses/43491/discussion/3527328?comment=8278768
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272010
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272010
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272793
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272793
https://edstem.org/us/courses/43491/discussion/3527328?comment=8271943
https://edstem.org/us/courses/43491/discussion/3527328?comment=8271943
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272759
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272759

=lY+Z
D1

Anonymous Chamois 1y #487cde = v Resolved

SU23-MT-Q2.10

Can we say memset(cur_user->borrowed_books, NULL (instead of 0), MAX_BORROWS *
sizeof(Book));

QD e

Eddy Byun sTarF 1y #487dbc

Yea, NULL is fine.

Anonymous Crab 1y #487cdc v Resolved
SU23-MT-Q6

in this question part 6.3, why couldn't it be 25 ps? because if we consider the path from input
0000ca11 to D of the register on left it takes 25ps and since input doesn't have clk-to-q so the hole
should be less than or equal to 25.

https://edstem.org/us/courses/43491/discussion/3527328?comment=8271184
https://edstem.org/us/courses/43491/discussion/3527328?comment=8271184
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272728
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272728
https://edstem.org/us/courses/43491/discussion/3527328?comment=8271103
https://edstem.org/us/courses/43491/discussion/3527328?comment=8271103

Q6 sps (8 points)
Consider the following circuit diagram and component delays:

/(" °
\" tanp = 20ps
D Q tNoT = 9ps
> I ﬁ — l tor = 20ps
X _ / txor = 25ps
[} tmultiplier = 50ps
D Q F N Esubtract = 35ps
j . te-q = Ops
> (—deadbeef tsemp - 2ps
0<] e 000006 1.C
0000call

Q6.1 (2 points) What is the smallest combinational delay of all paths in this circuit, in picoseconds?

Solution: 25ps

The shortest CL path is between the right register and the top left register, consisting of a
NOT gate and an OR gate, for a total delay of 25ps.

Grading: All-or-nothing.

Q6.2 (2 points) What is the minimum allowable clock period for this circuit to function properly, in
picoseconds?

Solution: 117ps

The longest path between any two registers is between the top left register and the register,
consisting of a multiplier, a NOT gate, a subtractor, and an AND gate, for a total of 110ps.
Additionally, we need to account for clk-to-q and setup, which gives us 117ps.

Grading: All-or-nothing.

Q6.3 (2 points) What is the maximum hold time the registers can have so that there are no hold time
violations in the circuit above?

Solution: 30ps

The shortest CL path is 25ps (see Q6.1), and the maximum hold time is the shortest CL path +
clk-to-q, which gives us 30ps.

Grading: All-or-nothing, except full credit was given for Q6.1 + 5 to avoid double jeopardy

Anonymous Sardine 1y #487cee
You have to look at is as a register to register value when it comes to CL max and min.

Eddy Byun sTtarF 1y #487dbb

0000call is a constant; itis not an input. The other input that is above 0000cal1l only gets
updated once the AND gate to the right gets changed. The input to the AND gates are also a
constant 0x0000061C and the output of an XOR gate. The output of the XOR gate only gets

changed after clk-to-g. The sum of all these delays is >30.

Anonymous Heron 1y #487cdb + Resolved
SP23-MT-Q2.10-12

https://edstem.org/us/courses/43491/discussion/3527328?comment=8271947
https://edstem.org/us/courses/43491/discussion/3527328?comment=8271947
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272719
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272719
https://edstem.org/us/courses/43491/discussion/3527328?comment=8270866
https://edstem.org/us/courses/43491/discussion/3527328?comment=8270866

Why would sheet be on the stack and *sheet be on the heap? Shouldn't their data types align if
*sheet is a pointer to sheet? Shouldn't they both be on the heap?

O

Anonymous Badger 1y #487cdf

was also confused abt this, the second answer in this article helped for me:
https://stackoverflow.com/questions/14588767/where-in-memory-are-my-variables-stored-
in-c (the one by hagrawal7777)

\2TE

Anonymous Heron 1y #487cfc

Thank you! This is really helpful
@ eee

Anonymous Chamois 1y #487ccf = v Resolved

SPRING23-MT2-Q2

e for Q2.1 can we write malloc(sizeof(cheatsheet)) as calloc(1, sizeof(Cheatsheet) would
basically malloc space for 1 * sizeof(cheatsheet)

e (Q2.3:]ust to clarify would it be &(sheet->pages[i]), so first we would find the relevant
pages[i] and then take the address of it

e Q2.11 and 12: | get that *sheet would be a pointer and you need to malloc space for it
which is what we did for Q2.1 but what is sheet?

Eddy Byun sTarF 1y #487dac

1. calloc is the only solution that would get full points because calloc 0's out the
allocated memory, and we need to initialize total_length to be0

2.Yes

3. sheet is alocal variable that contains the pointer to the allocated Cheatsheet on the
heap. While xsheet is onthe heap, sheet itself will live in the stack.
Q) e

Anonymous Chamois 1y #487dba

does calloc O's out all the parameters of Cheatsheet. so once we calloc, student_id,
total_length would be 0 and Page pages[NUM_PAGES] would have the appropriate
memory space malloced?

@ s

Eddy Byun starF 1y #487dee

4 Replying to Anonymous Chamois

Page pages[NUM_PAGES] would be allocated on the heap as well and will also be zero'd
out. Both calloc and malloc allocate memory on the heap. calloc will initialize all
the values that you allocate to 0 while malloc will not initialize the values to anything.
As a result, when you call malloc, you can have garbage values.

@ cee

Anonymous Pony 1y #487edb
““ Replying to Eddy Byun
Why do we need to initialize total_length to be 0?

https://edstem.org/us/courses/43491/discussion/3527328?comment=8271259
https://edstem.org/us/courses/43491/discussion/3527328?comment=8271259
https://stackoverflow.com/questions/14588767/where-in-memory-are-my-variables-stored-in-c
https://stackoverflow.com/questions/14588767/where-in-memory-are-my-variables-stored-in-c
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272255
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272255
https://edstem.org/us/courses/43491/discussion/3527328?comment=8270063
https://edstem.org/us/courses/43491/discussion/3527328?comment=8270063
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272640
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272640
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272718
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272718
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273553
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273553
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272718
https://edstem.org/us/courses/43491/discussion/3527328?comment=8283924
https://edstem.org/us/courses/43491/discussion/3527328?comment=8283924
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273553

Y

Anonymous Heron 1y #487aade

“ Replying to Eddy Byun

Why would the last line be *ch = sheet if sheet is on the stack so the information would
disappear after the function call ends?

Since the stack memory of a function gets deallocated after the function returns, therelis n@ guarantee that the value stored in those area will stay the same.
A common mistake is to return a pointer to a stack variable in a helper function. After the caller gets this pointer, the invalid stack memory can be
overwritten at anytime. The following figures demonstrate one example of such scenario. Assume there is a Cube class that has methods getvolume and
getsurfacehrea, as well as a private variable width.

D1

Anonymous Sardine 1y #487cce =+ Resolved

SU23-MT2-Q1.7

| am confused as to how we got 2 for this question and 0 for 1.8 the other because it seems to
contradict this solution from discussion 4:

1 1i x5 @x@0FFeoea @xFFFFFFEFF
2 1w x6 B(x5) B‘ka‘@
3 addi x5 x5 4 oAC
4 lhu x7 1(x5) 56
5 1h x8 1(x5) 0x00FFR@04 | 0x1C
& 1b x93 3(x6) oxe0
7 sh x8 2(x5) OxAB

axa1

Ax08FFoaes ax24

axDE
axAD
axBE
@x00ABA124 axEF

@x00000000

e Line 1: x5 will hold @x@@FFeaee

e Line 2: x6 will hold 0x00AB0124, the word at the address @x@@FFegee + 0
It's little endian or even:

e Line 4: x7 will hold 8x@000AC56. @xACS6 is the 2 bytes of data stored starting
at address @x00FF@e@4 + 1. Because the instruction is lhu, x7 will hold @xACS6

zero-extended. Recall, registers store 32 bits

This is picking locations starting from the MSB side instead, so applying that same logic to Q1.7
And Q1.8 we wouldn't get 2 and 0 respectively, we'd get 0(x) being 00 and thus 0 for 1.7, and big
endian would be 2 because 0(x) =01 and 1(x) = 01 and then finally 2(x) = 00

O

Eddy Byun starF 1y #487dae
Sorry, what do you mean by "picking locations starting from the MSB side"?

When we store 257 (0x00000101) in a little endian system, this is the memory layout for a
little endian system:

https://edstem.org/us/courses/43491/discussion/3527328?comment=8299605
https://edstem.org/us/courses/43491/discussion/3527328?comment=8299605
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273553
https://edstem.org/us/courses/43491/discussion/3527328?comment=8269709
https://edstem.org/us/courses/43491/discussion/3527328?comment=8269709
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272691
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272691

Memory address a: 0x01

Memory address a + 1: 0x01

Memory address a + 2: 0x00

Memory address a + 3: 0x00

strlen((char *) &x); will return 2 in this case.
For a big endian system, this is the memory layout:
Memory address a: 0x00

Memory address a + 1: 0x00

Memory address a + 2: 0x01

Memory address a + 3: 0x01

strlen((char *) &x); will return 0 in this case.

Anonymous Sardine 1y #487daf

From discussion when we loaded line 2:

2 lw x6 @(x5)

We loaded from the highest point in memory, down:

Ox00
@xAB
Ox01

Ox00FF0Q00 Ox24

e Line 2: x6 will hold 0x00AB0124, the word at the address @x00FFeeee + 0

Does this mean | am reading the discussion sheet wrong?

Because applying the same logic from this sheet to this problem would leave me to
believe that we should be reading 0x00 first and not 0x01in little endian and the
opposite in big endian

\2TH

Eddy Byun starF 1y #487dbe
““ Replying to Anonymous Sardine

The memory diagram in the discussion goes from smallest memory address at the
bottom to largest memory address at the top.
@ eee

Anonymous Sardine 1y #487dbf
“ Replying to Eddy Byun
That's where my confusion is.

https://edstem.org/us/courses/43491/discussion/3527328?comment=8272705
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272705
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272771
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272771
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272705
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272783
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272783
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272771

Because for the problem, the 01's are stored at the lowest memory address; YET, in
discussion we do not pull from the lowest memory address, we pull from the highest,
so if | apply the same logic from discussion, to this question, | would pull 00 from the
top because they are in the highest memory address not the 01's

If we pulled from lowest memory address in discussion first, we'd have the same
answer but flipped.

Eddy Byun sTarF 1y #487dcc
4+ Replying to Anonymous Sardine

We load a word from 0x00FFO0Q0 since x5 is equal to 0xO0FFO000. A word is 4 bytes,
so we get

0xO00FFO000: 0x24
0x00FFO001: 0x01
0x00FFO0002: OxAB
0x00FFO003: 0x00

Since we're working with a little endian system, the least significant byte is stored at the
smallest memory address. Therefore, x6 is going to contain 6x60AB0124

Anonymous Sardine 1y #487dce
““ Replying to Eddy Byun

Ah, when viewed that way it makes sense, thank you.

Anonymous Crab 1y #487ccc v Resolved

SU23-MT-Q3
When a question says write it in a floating point value, does that mean to write it like 1.1 or 1.5?

Like in here | though because question said return the result as a floating point value, we should
say it's 1.1? i though 1.5 is the decimal representation of 1.1.

Q3.3 (2 points) mystery(oo)

Solution: 1.5

Positive infinity has representation

0b0 11111111 00000000000000000000000

and thus is

0b0 01111111 10000000000000000000000

after the shift. This is a positive number with an exponent of 127 pre-bias (0 post-bias).
11 x2°=1.5

Grading: All-or-nothing.

Eddy Byun sTtarF 1y #487dab

We'll try to explicitly state the form that we want you to express your answer as. | think the
intent was to have this written in decimal form

https://edstem.org/us/courses/43491/discussion/3527328?comment=8272858
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272858
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272783
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272891
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272891
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272858
https://edstem.org/us/courses/43491/discussion/3527328?comment=8269496
https://edstem.org/us/courses/43491/discussion/3527328?comment=8269496
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272613
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272613

(AT

Anonymous Armadillo 1y #487cbb = v Resolved
SU23-MT-Q4

Why do we not save ra to the sp?

1 next_number:
2 addi sp sp -4
3 sw s0 0(sp)
4 is_odd s0 aD
5 beq s0 x0 else
6 s11i s0 a0 1
7 add so s0 al
8 addi a0 s0 1
9 j exit
10 else:
11 srai a0 a0 1
12 exit:
13 1w s0 0(sp)
14 addi sp sp 4
15 jr ra
Grading: Credit was given for all equivalent answers, with points deducted for using t registers,
mul, or breaking calling convention.

Eddy Byun sTarF 1y #487daa

We never overwrite the ra register, so we don't need to save ra onto the stack

Anonymous Wolf 1y #487caa v Resolved
SP23-MT-Q2
Canwe also calloc(1l, sizeof(struct Cheatsheet)) instead of calloc(1,

sizeof(Cheatsheet)) ?
D1

@ Andrew Liu STAFF 1y #487ddc
Yes, Cheatsheet is typedef'd as struct Cheatsheet.

Anonymous Wolf 1y #487bff = v Resolved
SP23-MT-Q2

Could ch = &sheet work instead of *ch = sheet?
O e

@ Andrew Liu sTAFF 1y #487cba
No, since Cis pass by value, what ch = &sheet does is change your local copy of ch without
affecting the value passed in by the parent.
@ oee

https://edstem.org/us/courses/43491/discussion/3527328?comment=8267989
https://edstem.org/us/courses/43491/discussion/3527328?comment=8267989
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272566
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272566
https://edstem.org/us/courses/43491/discussion/3527328?comment=8266141
https://edstem.org/us/courses/43491/discussion/3527328?comment=8266141
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273236
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273236
https://edstem.org/us/courses/43491/discussion/3527328?comment=8266114
https://edstem.org/us/courses/43491/discussion/3527328?comment=8266114
https://edstem.org/us/courses/43491/discussion/3527328?comment=8267954
https://edstem.org/us/courses/43491/discussion/3527328?comment=8267954

Anonymous Ferret 1y #487edf
Hi, if you were to do *ch = sheet then ran print(ch) would this print out &sheet?

Anonymous Crab 1y #487bfc v Resolved
SP23-MT-Q3

in this question, how did they found 61?

Q3.3 (5 points) Consider the floating point number 7.625. What is the largest (closest to +00) possible
value we can represent by modifying a single bit of the floating point representation of this number?

Write the binary representation of each component of your answer.

Solution: Sign bit: 0b0

Exponent bits: 0b11001

Mantissa bits: 0b1110100000

7.625 = 61/8 = 61 x 273 = 0b111101 x 273 = (0b1.11101 x 2°) x 273 = 0b1.11101 x 22
Sign bit: 0 (positive). We know flipping the sign bit will just make the number negative, which
isn’t helpful.

Mantissa bits: 0b11101 00000. To increase the number, the most-significant bit we could flip
is the 0 to a 1, which would produce 0b1.11111 x 22, The difference between this number and
the original number is 0b0.00010 x 22 = 0b0.01 = 1/4. Flipping any of the less-significant
0s would increase the number by even less.

Exponent bits: 2 — (—15) = 17, which in unsigned 5-bit binary is 0b10001. We can increase
the number by flipping the most-significant 0 to a 1, which would produce 0b11001.

The overall solution is to leave the sign and mantissa bits unchanged, and flipping the most-
significant zero bit in the exponent.

Eddy Byun starF 1y #487cca
| think a better way to do the conversion is to do the following:

7->111,
0.625->.101,

->7.625=111.1015 = 1.11101 * 22
3 e

Anonymous Grouse 1y #487bef = v Resolved

SU22-MT-Q4.1

For line 11, what's the difference between srai and srli when dividing? Why does it matter that we
sign extend if all the numbers are going to be positive, so would srli work?

https://edstem.org/us/courses/43491/discussion/3527328?comment=8285080
https://edstem.org/us/courses/43491/discussion/3527328?comment=8285080
https://edstem.org/us/courses/43491/discussion/3527328?comment=8265584
https://edstem.org/us/courses/43491/discussion/3527328?comment=8265584
https://edstem.org/us/courses/43491/discussion/3527328?comment=8268606
https://edstem.org/us/courses/43491/discussion/3527328?comment=8268606
https://edstem.org/us/courses/43491/discussion/3527328?comment=8264426
https://edstem.org/us/courses/43491/discussion/3527328?comment=8264426

1 next_number:
2 addi sp sp -4
3 sw s0 0(sp)
4 is_odd s0O a0
5 beq s0 x0 else
6 slli sO a0 1
7 add so s0 a0
8 addi a0 s0 1
9 j exit
10 else:
11 srai a0 a0 1
12 exit:
13 1w s0 0(sp)
14 addi sp sp 4
15 jr ra
Grading: Credit was given for all equivalent answers, with points deducted for using t registers,
mul, or breaking calling convention.

1

@ Andrew Liu sTaFF 1y #487cae

Having either srai or srli were considered as equivalent solutions for this question.
1

Anonymous Ram 1y #487bee |+ Resolved
SU23-MT-Q4.16

| am unsure as to why the answer to the question is add a0 t0 x0, wouldn't that mean a0 would
always be 1 no matter how many steps were taken? | thought that sO was holding the number of
steps and therefore we were supposed to move the value of sO to a0.

2 .

@ Andrew Liu sTaFF 1y #487caf

You're correct, there's a typo in the solutions, that line should be add a6 so x6 or
equivalent.

Anonymous Swan 1y #487bed =« Resolved
SU23-MT-Q1.11
| don't understand how the exponent value was found. | thought there is a bias of -511 this would

be deormanlized so the exponent would become 2A(-511+511+1) -> 2A1. Hence, | don;t get why
the 10 bits of the exponents are all Os.

https://edstem.org/us/courses/43491/discussion/3527328?comment=8267904
https://edstem.org/us/courses/43491/discussion/3527328?comment=8267904
https://edstem.org/us/courses/43491/discussion/3527328?comment=8264412
https://edstem.org/us/courses/43491/discussion/3527328?comment=8264412
https://edstem.org/us/courses/43491/discussion/3527328?comment=8267940
https://edstem.org/us/courses/43491/discussion/3527328?comment=8267940
https://edstem.org/us/courses/43491/discussion/3527328?comment=8264136
https://edstem.org/us/courses/43491/discussion/3527328?comment=8264136

(1.5 points) Represent 1.5 x 27511 in hex using a binary floating point representation, which

follows IEEE-754 standard conventions, but has 10 exponent bits (and a standard bias of -511) and
21 mantissa bits.

Solution: 0x00180000
Looking at the number, it is equal to 1.15 x 27°11, Since we can only represent exponents from
—510 to 511 with a normal floating point number, this means our number must be represented
as a denormalized number, with a fixed exponent of 27?19, Rewriting our number to use this
new exponent gives 0.115 x 27°10, Thus the floating point representation is:

sign exponent mantissa

0 0000000000 11000000000000000000000

0000 0000 0001 1000 0000 0000 0000 0000
0x0 0 1 8 0 0 0 0

Anonymous Sardine 1y #487ccd
1519 » 277 == 1.1, - 2.7°1
denormalized = 159" . 2%9s+1 . gign ficand

011 - 2==1.1=>1.1-2"°1==0.11.27%1

27510 — 27511 +1

@ Andrew Liu sTArFF 1y #487dde

The exponent for a denormalized number is going to be bias + 1, and a denormalized
number is represented by a fully-zero exponent.

Anonymous Eland 1y #487beb = v Resolved
SP23-MT-Q6

This is conceptual but for finding the shortest and longest combinational block, does this basically
mean the shortest and longest time between two timed elements (i.e. clocks)?

Nikhil Kandkur staFr 1y #487bfa
Yup!

Anonymous Monkey 1y #487bcc =~ v Resolved
SP23-MT2-Q3.4

Given our binary floating point representation, with 5 exponent bits (and a standard bias of -15)
and 10 mantissa bits, how do we calculate to get that the total number of floating-point numbers
is 27167

Eddy Byun sTarF 1y #487bdc
We have 16 total bits and each bit can be either a 1 or a 0. Thus, the total number of floating
point numbers would be 2*2*2....*2 (16 multiplications) which is 2.

https://edstem.org/us/courses/43491/discussion/3527328?comment=8269533
https://edstem.org/us/courses/43491/discussion/3527328?comment=8269533
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273243
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273243
https://edstem.org/us/courses/43491/discussion/3527328?comment=8263510
https://edstem.org/us/courses/43491/discussion/3527328?comment=8263510
https://edstem.org/us/courses/43491/discussion/3527328?comment=8265322
https://edstem.org/us/courses/43491/discussion/3527328?comment=8265322
https://edstem.org/us/courses/43491/discussion/3527328?comment=8257422
https://edstem.org/us/courses/43491/discussion/3527328?comment=8257422
https://edstem.org/us/courses/43491/discussion/3527328?comment=8263064
https://edstem.org/us/courses/43491/discussion/3527328?comment=8263064

(AT

Anonymous Chamois 1y #487bca = v Resolved

SUM-MT-Q6.4

| understand the logic behind that A - B = A + (~B+1) but I'm still not sure how that corresponds to
35. Is it because A would be the output from the multiplier and while that is running you can
compute (~B+1) which would take 5 + 20 (25 ps) then when adding them together it would take 20
(given tAND is 20), so we could still hold it for 35 without altering the behavior since we want
maximum delaY?

@ Andrew Liu STAFF 1y #487cbc

The idea is the the first adder and not gate will run in parallel with the multiplier, and since
the delay of the first adder and not gate is less than that of the multiplier, the only delay that
adds to the path is that of the second adder.

Anonymous Armadillo 1y #487bbd = v Resolved
SP23-MT1-Q6.2

L J
Q6.2 (3 points) What is the maximum hold time the registers can have so that there are no hold time
violations in the circuit above? Reminder: you may assume that Input will not cause any hold

time violations.

Solution: 25 ps

The shortest path between any two timed elements is actually the path from the SEL signal,
which changes instantly at the rising edge of the clock, to the right register. This path has
only delay 25 ps from the mux.

If you didn’t see this path, the next-shortest path starts from the rightmost register and goes
around, through the NOT gate, to the top-left register. This path has a delay of 30 ps (clk-to-q
from the rightmost register) and 8 ps (from the NOT gate), for a total of 38 ps. Partial credit

was given for this answer.

| dont really understand the explanation for this question. | thought the maximum hold time
would is looking at the time from one register to the other? Why can we consider the time from
the SEL signal to the right register? Is mux a register?

Eddy Byun starF 1y #487bcd

#487afb
QD e

Anonymous Armadillo 1y #487bce

| see thanks, so essentially the SEL doesn't have a clk-to-q because it updates
instantaneuously? Also | am still confused as to why we can count that as the lower
bound, since arent we usually supposed to look at the minimum time from one register
to the other when upperbounding the hold time?

\2TH

@ Andrew Liu sTAFF 1y #487cbd
“ Replying to Anonymous Armadillo

The hold time is usually thought of as that when all inputs go through registers, but
more generally, one should think about "what is the minimum time after a clock tick

https://edstem.org/us/courses/43491/discussion/3527328?comment=8257387
https://edstem.org/us/courses/43491/discussion/3527328?comment=8257387
https://edstem.org/us/courses/43491/discussion/3527328?comment=8267996
https://edstem.org/us/courses/43491/discussion/3527328?comment=8267996
https://edstem.org/us/courses/43491/discussion/3527328?comment=8257337
https://edstem.org/us/courses/43491/discussion/3527328?comment=8257337
https://edstem.org/us/courses/43491/discussion/3527328?comment=8257477
https://edstem.org/us/courses/43491/discussion/3527328?comment=8257477
https://edstem.org/us/courses/43491/discussion/3527328?comment=8256301
https://edstem.org/us/courses/43491/discussion/3527328?comment=8257487
https://edstem.org/us/courses/43491/discussion/3527328?comment=8257487
https://edstem.org/us/courses/43491/discussion/3527328?comment=8268078
https://edstem.org/us/courses/43491/discussion/3527328?comment=8268078
https://edstem.org/us/courses/43491/discussion/3527328?comment=8257487

that all signals are stable." The easiest way to think about this is to treat any input that
comes from a tunnel that updates at the rising edge of the clock as coming from a
register with clk-to-q = ©.

@ .o

Anonymous Chamois 1y #487bba = v Resolved

SUM-MT-Q1.9
= (~A&C) | ((~A & B)|B) Idempotence (NOT)
= (~A&Q) |B Absorption (AND)

how does the second part simplify to B

Eddy Byun sTarF 1y #487bcb
Recall the absorption law says the following: A + AB = A,

IA* B + B can be simplified into B by the absorption law.
Q) e

Anonymous Chamois 1y #487bae = v Resolved

SUM-MT-Q1.7

| get that for little endian it would be stored as 00000101 but when we are taking the strlen of it,
we would count by char to read '1' and then stop because of the next number '0' (null). | would
think it is strlen of 1 since null terminators don't count as the length?

"When strlen interprets this as a string, it will count length until the first null byte"

Eddy Byun sTarF 1y #487bbf
Little endian stores 0x00000101 like this

Address a: 0x01 (least significant byte)
Address a + 1: 0x01
Address a + 2: 0x00
Address a + 3: 0x00

strlen((char *) &x) will see the value at addresses a and a+1 are both not-NULL but see
that the value at address a+2 is NULL, so it will return 2.
Q) e

Anonymous Swan 1y #487bac v Resolved

SUM-MT-Q1.7: | got the binary rep of 257 to be 100000001 but i'm not sure how to get the byte
rep from this. how did you get the four bytes representation as 00 01 01 01.

https://edstem.org/us/courses/43491/discussion/3527328?comment=8257290
https://edstem.org/us/courses/43491/discussion/3527328?comment=8257290
https://edstem.org/us/courses/43491/discussion/3527328?comment=8257399
https://edstem.org/us/courses/43491/discussion/3527328?comment=8257399
https://edstem.org/us/courses/43491/discussion/3527328?comment=8257063
https://edstem.org/us/courses/43491/discussion/3527328?comment=8257063
https://edstem.org/us/courses/43491/discussion/3527328?comment=8257382
https://edstem.org/us/courses/43491/discussion/3527328?comment=8257382
https://edstem.org/us/courses/43491/discussion/3527328?comment=8256851
https://edstem.org/us/courses/43491/discussion/3527328?comment=8256851

For Q1.7 and Q1.8, consider the following code snippet and assume that ints are 4 bytes.

int x = 257;
int y = strlen((char *) &x);

Q1.7 (1.5 points) In a little-endian system, what will y contain?

Solution: 2

x contains the four bytes 0x00 00 01 01. Thus on a little-endian machine, the bytes will be
stored with the nonzero bytes at lower addresses. When strlen interprets this as a string,
it will count length until the first null byte - in this case, it will count both 0x01 bytes and
report a length of 2.

Grading: All-or-nothing, except partial credit was given for interpreting it as a big-endian
system.

Anonymous Chamois 1y #487bad £ ENDORSED
left pad 100000001 with Os to get 32 bits and then find the hex of that i think

Eddy Byun sTarF 1y #487bbe
Yep as Anon Chamois says, we 0 pad 100000001 with 0's and then convert to hex.

Anonymous Cormorant 1y #487afd = v Resolved

(12 points)
: Husly
at the rising : and rem able during any given clock cycle. You may assume

:_ 15 . o TE | e circuit d e 'S S single bit co = = »g insta Anec ‘.il

that Input

T = 8PS
'Fl‘u:.-.. — .‘hl ps
‘fl';ll.ZUI]"]U_‘t' — 1000 ps
ter = 2 PS
-q — 30 ps

MUY e
setup — 20 ps

The left shifter combinational logic block shifts the top input by the number of bits indicated by the
bottom input. The shifter in the n shifts the output of the connected register left by 1 bit.

Q6.1 (3 points) What is the minimum clock period for the circuit above such that it will always result
in well-defined behavior?

Ps

3 points) What is the maximum hold time the registers can have so that there are no hold time
Reminder: you may assume that Input will not cause any hold

SP23-MT-Q6.2
- The solution states that the next max hold time would be 38, with the rightmost register. But
wouldent the next max hold time be 32, with the top left register getting an input signal having a

https://edstem.org/us/courses/43491/discussion/3527328?comment=8257040
https://edstem.org/us/courses/43491/discussion/3527328?comment=8257040
https://edstem.org/us/courses/43491/discussion/3527328?comment=8257364
https://edstem.org/us/courses/43491/discussion/3527328?comment=8257364
https://edstem.org/us/courses/43491/discussion/3527328?comment=8256373
https://edstem.org/us/courses/43491/discussion/3527328?comment=8256373

clk-q of 30, then going through the shifter with 2 ps. Thus needing max hold time to be 32 if we
pretend the SEL is not there? Or Am | missing something

Eddy Byun starF 1y #487baf

After going through the shifter, the signal has to go through the mux which adds another
25ps, so the path you described is not the next max hold time.

Anonymous Cormorant 1y #487bdb

Oh | thought that logic min, was the first place/time when the logic changed, which
would be the leftshifter. | guess this assumption was wrong. Thank you!
O .

Anonymous Grouse 1y #487adf = v Resolved

SP23-MT-Q6.1

More of a conceptual question, but if a problem asks us to find the minimum clock period, can we
assume that means finding the longest path? If so, why?

Also, how do we know when to factor in the setup time? Do we add it in every time when
approaching the input of a register?

D1

Eddy Byun sTare 1y #487bbc

Clock period >= clk-to-q delay + longest combinational delay + setup time. If we set our clock
period to be clk-to-q delay + non-longest combinational delay + setup time, then our clock
isn't going to give enough time for the longest combinational delay path to finish its
computation. The clock will tick before the longest combinational path is done computing,
and this may lead to unexpected behavior for our circuit.

A little bit confused about the setup time question. What do you mean by "factor in the setup
time'?
Q) e

Anonymous Grouse 1y #487bcf

Thanks for the response! As for the second question, | guess for an example, if we took
the second shortest path between two timed elements, it would be the right most
register that goes through the NOT gate, which is 38ps. However, why wouldn't we add
an additional 20ps to 38ps to account for the setup time like we did in part 6.1?

D1

Eddy Byun starF 1y #487def
“ Replying to Anonymous Grouse

Recall these equations:
hold time <= clk-to-q + shortest combinational path
clock period >= clk-to-q + longest combinational path + setup time

In 6.1, we were asked to find the minimum clock period, so we need to add the setup
time.

https://edstem.org/us/courses/43491/discussion/3527328?comment=8257277
https://edstem.org/us/courses/43491/discussion/3527328?comment=8257277
https://edstem.org/us/courses/43491/discussion/3527328?comment=8262180
https://edstem.org/us/courses/43491/discussion/3527328?comment=8262180
https://edstem.org/us/courses/43491/discussion/3527328?comment=8255797
https://edstem.org/us/courses/43491/discussion/3527328?comment=8255797
https://edstem.org/us/courses/43491/discussion/3527328?comment=8257334
https://edstem.org/us/courses/43491/discussion/3527328?comment=8257334
https://edstem.org/us/courses/43491/discussion/3527328?comment=8258546
https://edstem.org/us/courses/43491/discussion/3527328?comment=8258546
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273573
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273573
https://edstem.org/us/courses/43491/discussion/3527328?comment=8258546

In 6.2, we were asked for the maximum hold time, and from our equation we can see
we don't need to add the setup time.

Beyond equations, why do we account for setup time for calculating the min clock
period but we don't in calculating max hold time?

Remember that the setup time is time that you give for the signal that goes into the
input of the register to become stable before the rising edge of the clock. The value
that goes through the longest combinational path needs to become stable so we add
the setup time.

Hold time is the amount of time we can keep the value at the input of the register after
the rising edge of the clock. We can keep the input to the register after the rising
edge of the clock for as long as the shortest combinational path + clk to g because
beyond this time frame, the input to a register may change! Here's a diagram that |
found that shows the difference b/w setup time and hold time (you can also find this
diagram on the Discussion 6 worksheet!)

Setup | Hold
D1

Anonymous Grouse 1y #487adb = « Resolved
SP23-MT-Q4.3

I'm confused on the concept of the PC and what line 2 is and how we got the address for line 2.

https://edstem.org/us/courses/43491/discussion/3527328?comment=8255576
https://edstem.org/us/courses/43491/discussion/3527328?comment=8255576

Solution:

jal rd temp_label

addi rd rd 8

lui t0 imm

add rd rd t0

This one is tricky. The first thing to remember is what auipc does. First, it takes a 20-bit imm,
and creates an immediate with these 20 bits as the upper 20 bits and 0s as the lower 12 bits.
Then, it adds this new immediate with the current PC.

First, we have to get the value of the current PC. Looking through the reference card, the only
instructions that put the PC in a register are the jump instructions. Here, we use jal to get
the address of the jal instruction, plus 4 (i.e. the address of Line 2 here) into register rd.
However, the question says that we should be adding to the PC of the final instruction in our
answer. Since our answer uses all 4 lines, and we got the address of Line 2, we need to add 8
bytes = 2 instructions to the PC we got, to find the PC of the final instruction.

Now, we can take imm and build the 32-bit value we’ll be adding to PC. Note that imm is 20 bits,
so an addi instruction (with only a 12-bit immediate) cannot handle this number. We have
to use lui to put these 20 bits into the top 20 bits of a register. We choose to use t0 because
that’s the only other register we can modify, and rd is already holding our current PC. (If we
lui’d into rd, we’'d mess up the PC we found.)

Finally, we use add to add the PC and the immediate.

Other answers are possible here, e.g. putting the PC in t0 and the immediate in rd before

adding.

2 -

Eddy Byun sTarF 1y #487bde

PCis the program counter, and it tell us which instruction we're currently executing. When
we do jal rd temp_label, we will set rd equalto PC + 4. Notice that the last instruction
add rd rd to is 3 instructions away from jal rd temp_label , which meansit's PC + 12
away from jal rd temp_label. Since we've set PC+4 to our rd already, we need to add 8,
which is why the second line is addi rd rd 8

Anonymous Manatee 1y #487ebb

A couple of follow-up questions:
1) When we're executing jal rd temp_label, isn't PC+4 temp_label?

2) The question says that we should use the PC of the fourth line. However, when we're
executing the last line (add rd rd t0), the PC points to the instruction after that. Let
final_pc be the address of the instruction below add rd rd t0, which is the PC value we
want. Then add is final_pc - 4, lui is final_pc - 8, addi is final_pc - 12. Therefore, we are
loading final_pc - 12 into rd via the jalr command. Shouldn't we be adding 12 instead of
8?

Anonymous Gerbil 1y #487ada = v Resolved
SP23-MT-Q1.11

isn't lowercase '0' Ox6F in ASCII and not 0x65?
3 s

https://edstem.org/us/courses/43491/discussion/3527328?comment=8263251
https://edstem.org/us/courses/43491/discussion/3527328?comment=8263251
https://edstem.org/us/courses/43491/discussion/3527328?comment=8280865
https://edstem.org/us/courses/43491/discussion/3527328?comment=8280865
https://edstem.org/us/courses/43491/discussion/3527328?comment=8255490
https://edstem.org/us/courses/43491/discussion/3527328?comment=8255490

Jero Wang starF 1y #487deb
#487dea
1

Anonymous Gerbil 1y #487ded
thanku!

Anonymous Stingray 1y #487ace = v Resolved

Q3.4 (5 points) How many non-zero numbers x are there in this floating point system where x and 2x
differ by exactly 1 bit?

Write your answer as a sum or difference of unique powers of 2 (e.g. 23 — 22 + 21).

Solution: 2!% — 212

Note that to double a floating-point number, we have to increase the exponent by 1.

When we increase the exponent by 1, what could happen? If the least-significant bit of the
exponent (as represented in bias notation) is 0, then the 0 gets flipped to a 1. For example,
0b11010 + Ob1 = 0b11011.

If the least-significant bit of the exponent is 1, then the 1 flips to a 0, a 1 carries over into
the next place, and other bits must change. For example, 0b11011 + 0b1 = 0b11100, which
changed 3 bits.

In summary, we need to figure out how many floating-point numbers have a least-significant
exponent bit of 0. This is half of the floating-point numbers (if you just wrote out all the bit
representations, half of them would have a 0 in the exponent LSB). There are 216 floating-point
numbers, and 2!'° of them have a 0 in the exponent LSB.

The last thing we need to do is remove the infinities, NaNs, and denorms, because adding 1 to
the exponent does not double these numbers. (In the case of denorms, changing the exponent
also introduces the implicit 1, which changes the number in other ways than just a simple
doubling.)

Denorms: Exponent is all 0s. The 11 sign/mantissa bits could be anything, so there are 2!
denorms we have to remove from our final total.

Infinities and NaNs: Exponent is all 1s. Just like the denorms, there are 2! more values we
have to remove.

In total, we throw out 2 x 2!! = 212 values from our original total of 2.

The original idea for this question came from an ex-TA who went on to teach other classes, so
you can’t blame anyone on the current staff for it. It’s a tricky question!

for this problem, don't you need to re-add the denormalized numbers with a least significant bit
of 0 in the significant?

for ex.
0.0001 * 2A-14 multiplied by 2 would give 0.0010 * 2A-14 so we would have a final answer of 2415
-2M2+2M0

Eddy Byun staFF 1y #487aef

The example that you gave changes two bits. Also, adding changing the least significant bit of
the mantissa from 0 to 1 does not double the denorm number.

Imagine our mantissa is 0000010000 - this is going to be 0.0000010000,* 2714

If I change the least significant mantissa bit to a 1, | get 0.0000010001,* 2714, and this will not
double the number.

https://edstem.org/us/courses/43491/discussion/3527328?comment=8273353
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273353
https://edstem.org/us/courses/43491/discussion/threads/487dea
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273486
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273486
https://edstem.org/us/courses/43491/discussion/3527328?comment=8254717
https://edstem.org/us/courses/43491/discussion/3527328?comment=8254717
https://edstem.org/us/courses/43491/discussion/3527328?comment=8256211
https://edstem.org/us/courses/43491/discussion/3527328?comment=8256211

D1

Anonymous Heron 1y #487acd = v Resolved

SU23-MT-Q2

What is the answer to Q4.1 --> the RISC-V instruction that is_odd would translate to?

Doesn't appear in the solutions

Eddy Byun sTarF 1y #487aec

#487bf
QO e

Anonymous Heron 1y #487acc = v Resolved

SU23-MT-Q2
Why is it
User* cur_user = &lib->users][i]

With the & instead of just lib->users[i]?
D1

Eddy Byun sTarF 1y #487afe

lib->users[i] is of type User . Note that on the left hand side, we want a Userx (a pointer
to a User struct). Since | want a pointer to the User instead of the User itself, | get the
address of 1ib->users[i], which is going to be &lib->users[1]

Anonymous Grouse 1y #487acb = + Resolved

SP23-MT-Q2.3 and 2.9

What's the difference again between using an & in front of a pointer vs using * in front, for
example between 2.3 and 2.9?

https://edstem.org/us/courses/43491/discussion/3527328?comment=8254687
https://edstem.org/us/courses/43491/discussion/3527328?comment=8254687
https://edstem.org/us/courses/43491/discussion/3527328?comment=8255919
https://edstem.org/us/courses/43491/discussion/3527328?comment=8255919
https://edstem.org/us/courses/43491/discussion/3527328?comment=8229634
https://edstem.org/us/courses/43491/discussion/3527328?comment=8254445
https://edstem.org/us/courses/43491/discussion/3527328?comment=8254445
https://edstem.org/us/courses/43491/discussion/3527328?comment=8256436
https://edstem.org/us/courses/43491/discussion/3527328?comment=8256436
https://edstem.org/us/courses/43491/discussion/3527328?comment=8254414
https://edstem.org/us/courses/43491/discussion/3527328?comment=8254414

Solution:

02.1: calloc(l, sizeof(Cheatsheet)

Note that we need to calloc in this case in order to set total_length equal to 0.
Q2.2: ->student_id

Q2.3: &sheet->pages[i]

When we allocate memory on the heap for a Cheatsheet, we allocate memory for a Page array
of size NUM_PAGES. Therefore, we already allocated memory for each Page. In order to get the
correct Page, we need to index into the correct Page in our Cheatsheet (sheet->pages[i]). To
get the pointer to this Page, we will use the & to get a pointer to this Page (&sheet->pages[i])

Q2.4: ->num
Q2.5: ->data
0Q2.6: malloc(sizeof(char) * (strlen(contents[i]) + 1))

Note that we allocated memory for a char pointer but we now need to actually allocate memory
for the string itself. Also, strlen doesn’t consider the null-terminator, so we need to add 1.

Q2.7: ->data
Q2.8: ->total_length
Q2.9: *ch = sheet

1

Eddy Byun sTarF 1y #487bbb

The & operator takes the address of some variable. The * in front of a pointer retrieves the
value that is pointed by the pointer.

Anonymous Grouse 1y #487bda

Why wouldn't we be using * in front of sheet in 2.3? Is it because we are trying to get
the specific address of that specific sheet to point to a specific page? | originally used *
to dereference since we initially created a pointer to sheet?

1

Eddy Byun starF 1y #487dff
<+ Replying to Anonymous Grouse

*(sheet->pages[i]) is going to treat the value of (sheet->pages[i]) as an address and
dereference that address. We see that we want Pagex page on the left. sheet->pagesli]
is going to give us the Page struct, but we want a Pagex (a pointer to the Page.The &
operand is going to give me the address of (sheet->pages[i]), which is the Pagex

that | want.

1

Anonymous Bee 1y #487fde
could we do ch = &sheet?
1

Anonymous Gerbil 1y #487aca = v Resolved

SP23-MT-Q1.7

How do you simplify IY + Y*Z into IY + Z?

https://edstem.org/us/courses/43491/discussion/3527328?comment=8257302
https://edstem.org/us/courses/43491/discussion/3527328?comment=8257302
https://edstem.org/us/courses/43491/discussion/3527328?comment=8258569
https://edstem.org/us/courses/43491/discussion/3527328?comment=8258569
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273618
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273618
https://edstem.org/us/courses/43491/discussion/3527328?comment=8258569
https://edstem.org/us/courses/43491/discussion/3527328?comment=8291464
https://edstem.org/us/courses/43491/discussion/3527328?comment=8291464
https://edstem.org/us/courses/43491/discussion/3527328?comment=8254375
https://edstem.org/us/courses/43491/discussion/3527328?comment=8254375

Eddy Byun sTarF 1y #487afc
| used the absorption rule: A+ AB=A

In this case, you have lY + IY*Z = 1Y

PluginlY +lY*Zinto!lYtogetIY +IY*Z +Y*Z=IY+Z*(Y+IY)=IY+Z
Q’)Z

Anonymous Gerbil 1y #487bab

THANKYOU SO MUCH
o -

Anonymous Snake 1y #487abc = v Resolved

SP23-MT-Q6.3

How does replacing multiplier with shifter (Switch constant from 2 to 1) not affect the behavior of
the circuit? | don't understand the usage of the shifter. Would appreciate any examples as well.
\2TE

Eddy Byun starF 1y #487afa

Note how the bottom multiplier is multiply the top input into the multiplier block by 2. This is
the same as left shifting by 1. As an example, consider this binary number: 0b0011 (3 in
decimal). Shifting it left by 1 gives us 0b0110 (6 in decimal). A shift left operation by one is
similar to multiplying the number by 2, which is why we can replace the multiplier with a
shifter.

D e

Anonymous Snake 1y #487abb v Resolved
SP23-MT-Q6.2

Why do we look at the path from the SEL signal to the right register which has a hold time of 25ps
instead of right register to top left register which has a hold time of 8 (from NOT gate)? Also what
is an SEL gate and timed element? And what are other timed elements?

Eddy Byun stare 1y #487afb

The SEL signal is "a single bit control signal that updates instantaneously at the rising edge of
every clock cycle and remains stable during any given clock cycle" (from the exam). Since SEL
will update instantaneously, we consider the delay for the mux (which is 25 ps), which may
change the output of the mux and this in turn changes the input to the register. The delay
from the right register to the left register is 38ps (clk-to-q + not delays), and this delay is
shorter than the delay from the SEL to the input of the right register.

Anonymous Swan 1y #487dad

Is SEL treated like a register? i thought to find the path you must go from the output of
a register to input of another
@ eee

Eddy Byun starr 1y #487dfe
“ Replying to Anonymous Swan
| would say it's like the input that we saw from HW 5.6 (the X and Y inputs)

https://edstem.org/us/courses/43491/discussion/3527328?comment=8256349
https://edstem.org/us/courses/43491/discussion/3527328?comment=8256349
https://edstem.org/us/courses/43491/discussion/3527328?comment=8256652
https://edstem.org/us/courses/43491/discussion/3527328?comment=8256652
https://edstem.org/us/courses/43491/discussion/3527328?comment=8253708
https://edstem.org/us/courses/43491/discussion/3527328?comment=8253708
https://edstem.org/us/courses/43491/discussion/3527328?comment=8256258
https://edstem.org/us/courses/43491/discussion/3527328?comment=8256258
https://edstem.org/us/courses/43491/discussion/3527328?comment=8253602
https://edstem.org/us/courses/43491/discussion/3527328?comment=8253602
https://edstem.org/us/courses/43491/discussion/3527328?comment=8256301
https://edstem.org/us/courses/43491/discussion/3527328?comment=8256301
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272650
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272650
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273595
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273595
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272650

Qe

Anonymous Grouse 1y #487aba =« Resolved

SP23-MT2-Q1.6

As a conceptual question, when do we know when to sign extend? Because when | was calculating
the imm, | took the MSB and sign extended with 1's since 2A9 was a 1.

D1

Eddy Byun sTarF 1y #487bdf

Note that the immediate is positive. Remember that for 2's complement, the most significant
bit (leftmost bit) tells us both the sign and magnitude of the binary number (if the leftmost
bitis a 1, we have a negative number if it's 0, it's a positive number). We see that the number
we have is positive, which means we sign extend by 0 since our number is positive.

Anonymous Grouse 1y #487cab

Wouldn't the leftmost bit be a 1 since 588=512+64+8+4 which means 229 would be the
leftmost bit whichis a 1?

D1

Eddy Byun sTarF 1y #487cfe

4+ Replying to Anonymous Grouse

We have 21 bits for the immediate for J instructions, so the leftmost bit would be the bit
at position 220
@ s

. This bit is going to be a 0 because our immediate is positive.

Anonymous Swan 1y #487dcf

“ Replying to Eddy Byun

for the sign extending the imm, | found the imm of 588 to be 0010 0100 1100 -> 24C in
hex. Would sign extending this be to pad the left with 0000 0000 to make this 32 bits? |
am confused because | see the answer is 0x24C0O09EF instead of 0x0024C9EF as with
the sign extending i mentioned

@ eee

Eddy Byun sTarF 1y #487eaa
4 Replying to Anonymous Swan

J imm[20]10:1]11]19:12] rd opcode

Careful with how we organize our immediate for | type instructions!
O .

Anonymous Octopus 1y #487aaf = v Resolved
Hi,

For SP23-MT1-Q6.2-6.4, for 6.3 and 6.4, would adding another register between the multiplier and
the mux be acceptable, along with a new minimum clock period of 1050ps?

And for 6.2, why do we consider SEL? | thought that when determining minimum clock period, we
only consider any path between any two registers. Is SEL acting like the output signal from a
register since it is timed with the clock, and that's why it's considered?

@ oee

https://edstem.org/us/courses/43491/discussion/3527328?comment=8253506
https://edstem.org/us/courses/43491/discussion/3527328?comment=8253506
https://edstem.org/us/courses/43491/discussion/3527328?comment=8263300
https://edstem.org/us/courses/43491/discussion/3527328?comment=8263300
https://edstem.org/us/courses/43491/discussion/3527328?comment=8266577
https://edstem.org/us/courses/43491/discussion/3527328?comment=8266577
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272493
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272493
https://edstem.org/us/courses/43491/discussion/3527328?comment=8266577
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272933
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272933
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272493
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273626
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273626
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272933
https://edstem.org/us/courses/43491/discussion/3527328?comment=8253364
https://edstem.org/us/courses/43491/discussion/3527328?comment=8253364

Eddy Byun sTarF 1y #487baa

Adding a register between the multiplier and the mux is going to change the behavior of the
circuit, so this would not be a valid modification.

For 6.2, we are trying to find the maximum hold time. Recall that the general equation for
the hold time is Hold time < clk-to-q delay + shortest combinational delay. There is no clk-to-
q delay for SEL to be updated since it gets updated instantaneously. It takes 25ps for the
mux to get updated, and updating the SEL bit may change the output for the mux, which is
why the max hold time is 25 ps.

Anonymous Chicken 1y #487ff =+ Resolved

Q1.11 (1.5 points) Represent 1.5 x 272! in hex using a binary floating point representation, which
follows IEEE-754 standard conventions, but has 10 exponent bits (and a standard bias of -511) and
21 mantissa bits.

Solution: 0x00180000
Looking at the number, it is equal to 1.12 x 27°!1. Since we can only represent exponents from
—510 to 511 with a normal floating point number, this means our number must be represented
as a denormalized number, with a fixed exponent of 27910, Rewriting our number to use this
new exponent gives 0.115 x 27°!0, Thus the floating point representation is:

sign exponent mantissa

0 0000000000 11000000000000000000000

0000 0000 0001 1000 0000 0000 0000 0000
0x0 0 1 8 0 0 0 0

Grading: Partial credit was awarded for having the correct sign bit, having the correct
exponent bits, and having the correct mantissa.

Q1.1

| don't understand why the Mantissa is 11? | understand why -511 doesn't work, but | also don't
understand why the number converts to 0.11 * 2A-510. | thought moving the decimal place over
would mean it would be 0.15 * 2A-510?

‘O

Eddy Byun starF 1y #487aed
1.5% 2211 =11, %211 = 0,11, * 210 Translate 1.5 to binary first. Afterwards, moving the

decimal point to the left by one will cause us to increase the exponent by 1.

Anonymous Snake 1y #487fe =+ Resolved
SP23-MT-Q3.4

| want to double check if my understanding of the solution is correct. The solution says the total
number of floating points that has its least significant exponent bit as 0 is half of the total number
of floating points (2A16). My understanding is that at that last significant exponent bit, a floating
point can have either "0" or "1", so we can partition all of the possible fps into two groups, where
half of them is in "team last bit 0" and the other half in "team last bit 1".

If my understanding is correct, why do we still have to remove NaN/infinities? Since for these
representations all exponent bits are 1s, wouldn't they be included in "team last bit 1" already?
And at the end we just have to subtract the denorms from 2A15?

https://edstem.org/us/courses/43491/discussion/3527328?comment=8256639
https://edstem.org/us/courses/43491/discussion/3527328?comment=8256639
https://edstem.org/us/courses/43491/discussion/3527328?comment=8252212
https://edstem.org/us/courses/43491/discussion/3527328?comment=8252212
https://edstem.org/us/courses/43491/discussion/3527328?comment=8255950
https://edstem.org/us/courses/43491/discussion/3527328?comment=8255950
https://edstem.org/us/courses/43491/discussion/3527328?comment=8252192
https://edstem.org/us/courses/43491/discussion/3527328?comment=8252192

| also don't really understand what "introduces implicit 1" mean in the explanation for why adding
1 to the exponent bit for denorms is not the same as doubling the value.

Eddy Byun sTaFF 1y #487aee

We have to remove NaN/infinities for the following case: Our original value exponent bits are
0b11110, and we change the least significant exponent bit so we now have 0b11111. In this
case, our number would be a NAN or infinity.

Regarding the denorm question, let's consider the following denorm number:
0 00000 0100000000, this would be 0.01, * 2714 = 0,25 * 214
If I change my least significant exponent bit so now | have

0 00001 0100000000, this would be 1.01, * 2714 = 1,25 * 2714,

1.25 * 2714 is not twice as large as 0.25 * 2714, Denorms have implicit 0's in front of the
mantissa while normalized numbers have implicit 1's in front of the mantissa. As soon as the
exponent changes from 00000 to 00001, we go from a denorm number to a normalized
number, and this is going to change between having an implicit 0 in front of the mantissa to
having an implicit 1.

D1

Anonymous Badger 1y #487fd =« Resolved

offsets for jump instruction will always be resolved in the linker step. why is this statement false?
\2RTE

Eddy Byun sTaFF 1y #487aeb
It's because the offsets can be resolved in both the assembler and linker stages.

Anonymous Camel 1y #487fb = v Resolved
SU23-MT-Q4.1

https://edstem.org/us/courses/43491/discussion/3527328?comment=8256134
https://edstem.org/us/courses/43491/discussion/3527328?comment=8256134
https://edstem.org/us/courses/43491/discussion/3527328?comment=8251968
https://edstem.org/us/courses/43491/discussion/3527328?comment=8251968
https://edstem.org/us/courses/43491/discussion/3527328?comment=8255867
https://edstem.org/us/courses/43491/discussion/3527328?comment=8255867
https://edstem.org/us/courses/43491/discussion/3527328?comment=8251625
https://edstem.org/us/courses/43491/discussion/3527328?comment=8251625

Solution:

1 num_steps:
Prologue
Omitted
2 addi s0 x0 0
3 loop_start:
4 addi t0 x0 1
5 beq a0 t0 loop_end
6 jal ra next_number
7 addi s0 sO 1
8 j loop_start
9 loop_end:
10 add a0 t0 x0
Epilogue
Omitted
11 jr ra

Grading: Credit was given for all equivalent answers, with points deducted for using s registers
or breaking calling convention.

On line 10 of the solution, isnt it supposed to be "add a0 sO x0" instead of "add a0 t0 x0"?
D1

Eddy Byun starF 1y #487aea

Yea, it should be add a® s@ x0 or equivalent. Sorry for the confusion!
\2RTE

Anonymous Grouse 1y #487bdd
would mv a0 sO work?
D1

Eddy Byun starF 1y #487dfc

<+ Replying to Anonymous Grouse

Yes, since it's equivalent to add a6 s0® x0
Q1

Anonymous Monkey 1y #487cec

Would the #omitted part for both the prologue and epilogue be the logic to do calling
convention for saving and loading sO to and from the stack?
N

Eddy Byun starF 1y #487dfd
“ Replying to Anonymous Monkey

Yes, Decrementing/Incrementing stack, storing and loading so and ra for CC
purposes.
Q) e

Anonymous Sandpiper 1y #487fa = v Resolved
SU23-MT1-Q2.13

https://edstem.org/us/courses/43491/discussion/3527328?comment=8255835
https://edstem.org/us/courses/43491/discussion/3527328?comment=8255835
https://edstem.org/us/courses/43491/discussion/3527328?comment=8263162
https://edstem.org/us/courses/43491/discussion/3527328?comment=8263162
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273588
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273588
https://edstem.org/us/courses/43491/discussion/3527328?comment=8263162
https://edstem.org/us/courses/43491/discussion/3527328?comment=8271603
https://edstem.org/us/courses/43491/discussion/3527328?comment=8271603
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273590
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273590
https://edstem.org/us/courses/43491/discussion/3527328?comment=8271603
https://edstem.org/us/courses/43491/discussion/3527328?comment=8250958
https://edstem.org/us/courses/43491/discussion/3527328?comment=8250958

| don't understand the reasoning behind the solution where it says lib->users[i] cannot be
freed since it was not created using malloc. How else is the space being allocated?

O

Anonymous Dove 1y #487fc

for this question is the fact that you are freeing all of the malloc space within users but not
freeing the users array a valid response?

Eddy Byun starF 1y #487ade

No, see #487add on how we should free the users array.
O .

Eddy Byun sTarF 1y #487add

We can't free each index in lib->users which is what free(lib->users[i]) attempts to
do. When we called realloc, it returned a pointer to the users array, so if we want to free
the users array, we have to do free(lib->users) . It's similar to how in snek, we free'd our
snake array like this: free(state->snakes) - we couldn't iterate through the snakes array
and do free(state->snakes[i])

Anonymous Spoonbill 1y #487bfd

no but i dont understand why can we not iterate through the array and do that. is it
because only outputs of malloc/realloc/calloc can be freed?
@ eee

Eddy Byun starF 1y #487dfb
“ Replying to Anonymous Spoonbill

Calling free on something that was not returned by malloc , calloc , or realloc is
undefined behavior.

Q) eee

Anonymous Octopus 1y #487ef = v Resolved
Hi,

For SP23-MT1-Q4.1, is 1hu rd imm(rsl) followed by andi rd rd 00001111 acceptable?
Qe

Eddy Byun sTaFF 1y #487adc

It would have to be 1lhu rd imm(rs1) followed by andi rd rd 0x000000FF butyes you
could've used a different load instruction.
Q) e

Anonymous Raccoon 1y #487ee =+ Resolved

Sp 23 -MT 2

Q1.6 (3 points) Translate the following RISC-V instruction to its hexadecimal counterpart.
jal s3 588
Hint: 588 =512+ 64 + 8 + 4

Solution: 0x24C009EF

https://edstem.org/us/courses/43491/discussion/3527328?comment=8251647
https://edstem.org/us/courses/43491/discussion/3527328?comment=8251647
https://edstem.org/us/courses/43491/discussion/3527328?comment=8255771
https://edstem.org/us/courses/43491/discussion/3527328?comment=8255771
https://edstem.org/us/courses/43491/discussion/3527328?comment=8255756
https://edstem.org/us/courses/43491/discussion/3527328?comment=8255756
https://edstem.org/us/courses/43491/discussion/3527328?comment=8255756
https://edstem.org/us/courses/43491/discussion/3527328?comment=8265665
https://edstem.org/us/courses/43491/discussion/3527328?comment=8265665
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273587
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273587
https://edstem.org/us/courses/43491/discussion/3527328?comment=8265665
https://edstem.org/us/courses/43491/discussion/3527328?comment=8250357
https://edstem.org/us/courses/43491/discussion/3527328?comment=8250357
https://edstem.org/us/courses/43491/discussion/3527328?comment=8255705
https://edstem.org/us/courses/43491/discussion/3527328?comment=8255705
https://edstem.org/us/courses/43491/discussion/3527328?comment=8250172
https://edstem.org/us/courses/43491/discussion/3527328?comment=8250172

Confused how to arrange the imm field. | keep getting the wrong answer and am unsure (I get
0x0024C9EF).

Eddy Byun sTaFF 1y #487aae
Opcode: 110 1111

s3 = x19 =10011

588 = 0b0 0000 0000 0010 0100 1100 but we don't write the last bit since it's implicitly 0 so
bits [20:1] would be 0b0000 0000 0001 0010 0110

Bit 20: 0

Bit [10:1]: 0100100110
Bit11:0

Bit [19:12]: 00000000

Put it all together!

J imm[20]10:1]11]19:12] rd opcode

00100100110 0 00000000 10011 1101111

0010 0100 1100 0000 0000 1001 1110 1111 = 0x24CO09EF
1

Anonymous Horse 1y #487ccb

Why do we not write the last bit? Is this true in all labels or constants?
O .

Eddy Byun starF 1y #487efb
<+ Replying to Anonymous Horse

For B and | type instructions, we don't write the last bit because it will always be a 0

J imm[20]10:1|11]19:12] rd opcode

B | imm[12]10:5] rs2 rsi funct3 |imm[4:1]11]| opcode

The RISC-V instructions that we teach are 32 bits (4-bytes), but RISC-V also supports 16
bits (2 bytes), which is why we can omit the rightmost bit.
@ cee

Anonymous Gaur 1y #487efc

“ Replying to Eddy Byun

When we have x19, isn't it 25 in decimal and thus in binary it would be 11001? Or is the
x19 just referring to 19 in decimal?

Q’) eee

Anonymous Octopus 1y #487ed = v Resolved

Hi,

https://edstem.org/us/courses/43491/discussion/3527328?comment=8252531
https://edstem.org/us/courses/43491/discussion/3527328?comment=8252531
https://edstem.org/us/courses/43491/discussion/3527328?comment=8268809
https://edstem.org/us/courses/43491/discussion/3527328?comment=8268809
https://edstem.org/us/courses/43491/discussion/3527328?comment=8285997
https://edstem.org/us/courses/43491/discussion/3527328?comment=8285997
https://edstem.org/us/courses/43491/discussion/3527328?comment=8268809
https://edstem.org/us/courses/43491/discussion/3527328?comment=8286128
https://edstem.org/us/courses/43491/discussion/3527328?comment=8286128
https://edstem.org/us/courses/43491/discussion/3527328?comment=8285997
https://edstem.org/us/courses/43491/discussion/3527328?comment=8250165
https://edstem.org/us/courses/43491/discussion/3527328?comment=8250165

For SP23-MT1-Q2.6, | know it's better to include sizeof(char) but would it be wrong to omit it since
sizeof(char) is just 1 byte?

Eddy Byun starF 1y #487aad

Writing 1 isn't wrong but I'd recommend writing sizeof (char)

Anonymous Octopus 1y #487ec = v Resolved
Hi,

For SP23-MT1-Q2.1, would realloc(xch, sizeof(Cheatsheet)) be acceptable, ignoring the fact
that this doesn't set total_length to O (in other words, does this allocate memory correctly)?

Eddy Byun starF 1y #487aac

No, this would be undefined behavior. realloc(*ch, sizeof(Cheatsheet)) would only
work if we knew that xch == NULL since realloc behaves like malloc if the pointer that
you pass in is equal to NULL . In this problem, we don't say anything about the value of *ch
Also, like you said, this won'g set total_length to 0.

Anonymous Reindeer 1y #487bec

why does calloc set the total_length = 0; how does it know which variable to set to 0
through a call to calloc?
QD e

Eddy Byun starF 1y #487dfa
A Replying to Anonymous Reindeer

calloc sets all allocated memory to 0:
https://www.tutorialspoint.com/c_standard_library/c_function_calloc.htm
@ eee

Quan Nguyen 1y #487dc v Resolved
SU23-Midterm-Q1.1

Does the term "the same range of numbers" refer to the same amount of numbers represented
or the same values of numbers?

Justin Yokota starF 1y #487dd
Neither; this refers to the same distance between the largest representable number and the

smallest representable number.

Anonymous Rook 1y #487db v Resolved
SU23-MT-Q6.4

https://edstem.org/us/courses/43491/discussion/3527328?comment=8252397
https://edstem.org/us/courses/43491/discussion/3527328?comment=8252397
https://edstem.org/us/courses/43491/discussion/3527328?comment=8249802
https://edstem.org/us/courses/43491/discussion/3527328?comment=8249802
https://edstem.org/us/courses/43491/discussion/3527328?comment=8252373
https://edstem.org/us/courses/43491/discussion/3527328?comment=8252373
https://edstem.org/us/courses/43491/discussion/3527328?comment=8263779
https://edstem.org/us/courses/43491/discussion/3527328?comment=8263779
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273581
https://edstem.org/us/courses/43491/discussion/3527328?comment=8273581
https://edstem.org/us/courses/43491/discussion/3527328?comment=8263779
https://www.tutorialspoint.com/c_standard_library/c_function_calloc.htm
https://edstem.org/us/courses/43491/discussion/3527328?comment=8245007
https://edstem.org/us/courses/43491/discussion/3527328?comment=8245007
https://edstem.org/us/courses/43491/discussion/3527328?comment=8248363
https://edstem.org/us/courses/43491/discussion/3527328?comment=8248363
https://edstem.org/us/courses/43491/discussion/3527328?comment=8244588
https://edstem.org/us/courses/43491/discussion/3527328?comment=8244588

Q6 sbs (8 points
Consider the following circuit diagram and component delays:

o 0<]
tanp = 20ps
D Q tNoT = 5ps
tOR = 20ps
[rp e ey i |
X . / txor = 25ps
> tmultiplier e 5OPS
D Q © subtract = 35PS
A tclk—q = 5pS
[(i
deadbeef bl ps
0<} s 000 0061
0000call

Q6.4 (2 points) Suppose this circuit only deals with two’s complement integers. Currently, the subtractor
component has a delay of 35ps. What is the maximum delay an adder component can have such
that we could replace the subtractor component with adders, NOT gates, and constants to achieve
the same delay as the subtractor while maintaining the same behavior? You may assume that
constants have no delay.

As a reminder, the subtract component does the following operation:
output = top input - bottom input

Solution: 35ps

Since we’re dealing with two’s complement numbers, subtracting by x is equivalent to adding
~ x + 1, where ~ z flips all of the bits of z. As a result, we can chain together a NOT gate, an
adder with a constant 1, and another adder (to add the output of the previous adder and the
top input of the subtractor) to achieve the same behavior.

The intent of the question is for students to realize that the NOT gate and the first adder
does not actually add any additional delay, since the multiplier/NOT gate combo of the top
input of the subtractor takes more time than the NOT gate/adder combo for the bottom input.
Therefore, the adder can have a delay of 35ps (the same as the existing subtractor) for the
circuit to maintain the same timing behavior.

Grading: All-or-nothing, except 15ps was also awarded full credit due to ambiguity raised
within this question (assuming that the subtractor should be treated as a black box, and
replaced with a black box consisting of two adders, a NOT gate, and a constant).

The solution says that the NOT gate and the ADDER will not add any additional delay, is this
because the NOT gate is placed before the bottom input of the ADDER?

Justin Yokota starF 1y #487de
Yup. And that bottom input already arrives way before the top input. So it can be delayed a
bit.

Anonymous Swan 1y #487da = v/ Resolved

SU23-MT-Q6.4

https://edstem.org/us/courses/43491/discussion/3527328?comment=8248384
https://edstem.org/us/courses/43491/discussion/3527328?comment=8248384
https://edstem.org/us/courses/43491/discussion/3527328?comment=8243630
https://edstem.org/us/courses/43491/discussion/3527328?comment=8243630

| understand that by defintion two's complement ~X+1 but how does that have anything to do
with the answer 35?7 i don't understand why the adder delay is the same as the subtractor delay

Justin Yokota sTarF 1y #487df

Since A-B = A+(-B) = A+(~B+1), we can replace the subtractor with a NOT on B, then an ADD to
1, then an ADD to A. The goal, then, is to determine the maximum delay on ADD that lets the
circuit maintain the same clock period.

Anonymous Wolf 1y #487ce = v Resolved
SU23-MT-Q2

Could free(&lib->users[i]) alsoworkin the for loop?

Eddy Byun sTaFF 1y #487aab

No, the only way to correctly free the users arrayisto do free(lib->users).

Anonymous Wolf 1y #487cd = v Resolved
SU23-MT-Q2

Why isn't the memset part memset(curr_user->borrowed_books, NULL, MAX_BORROWS
sizeof (Bookx)) , with the pointer Bookx* instead of Book ? | thought borrowed_books in struct
User was defined as an array of Bookx .

@ eoe

Eddy Byun starF 1y #487aaa

Yea, you're right it should be Bookx* - sorry for the typo!

Anonymous Turtle 1y #487cb ~ + Resolved
SP23-MT-Q1.7

Why does x=257 contain the four bytes 0x00 00 01 01?
D e

@ Andrew Liu STAFF 1y #487cf

Integers are 4B types, so we know there are 4 bits. Then, 257 = 256 + 1 = 2A8 + 220 = 0b1
0000 0001 = Ob 0000 0000 0000 0000 0000 0001 0000 0001 = 0x00000101
\2RTE

Anonymous Goat 1y #487be = v/ Resolved

SP23-MT-Q2.10-12

Why is num pages on code? | think it's previously defined outside of the function so it should be
on static. And sheet is on stack because it's a pointer defined in function. The content of sheet is
on heap because it allocates memory. Are my reasonings correct?

D e

Eddy Byun starF 1y #487ca

Take a look at Homework 2, Memory Alpha Model! It's the same reason that SPOCK is in the
code segment; all instances of NUM_PAGES will be replaced by 8 by the compiler so it is

https://edstem.org/us/courses/43491/discussion/3527328?comment=8248528
https://edstem.org/us/courses/43491/discussion/3527328?comment=8248528
https://edstem.org/us/courses/43491/discussion/3527328?comment=8242162
https://edstem.org/us/courses/43491/discussion/3527328?comment=8242162
https://edstem.org/us/courses/43491/discussion/3527328?comment=8252342
https://edstem.org/us/courses/43491/discussion/3527328?comment=8252342
https://edstem.org/us/courses/43491/discussion/3527328?comment=8242128
https://edstem.org/us/courses/43491/discussion/3527328?comment=8242128
https://edstem.org/us/courses/43491/discussion/3527328?comment=8252306
https://edstem.org/us/courses/43491/discussion/3527328?comment=8252306
https://edstem.org/us/courses/43491/discussion/3527328?comment=8233861
https://edstem.org/us/courses/43491/discussion/3527328?comment=8233861
https://edstem.org/us/courses/43491/discussion/3527328?comment=8242378
https://edstem.org/us/courses/43491/discussion/3527328?comment=8242378
https://edstem.org/us/courses/43491/discussion/3527328?comment=8224304
https://edstem.org/us/courses/43491/discussion/3527328?comment=8224304
https://edstem.org/us/courses/43491/discussion/3527328?comment=8229668
https://edstem.org/us/courses/43491/discussion/3527328?comment=8229668

going to be in the code segment.
\2RTE

Anonymous Cod 1y #487cfb
What do you mean replaced by 8 in the compiler?
D1

Anonymous Reindeer 1y #487bd v/ Resolved

SU23-MT-4.1: what is the answer to this question?

Eddy Byun starF 1y #487bf

Sorry, it should be andi rd rs1 1
\2TE

Anonymous Spoonbill 1y #487bfe

how? dont we want to store 1 in rd if rs1 is an odd number? how does this achieve that
@ s

Anonymous Aardvark 1y #487cac

“ Replying to Anonymous Spoonbill

andi compares bitwise rs1 and 1, for a binary value to be odd, the last bit has to be 1.
therefore, if rs1 is odd, andi would compute 1 and 1 which stores 1 in rd. if rs1 is even,
it would've been 0 and 1 which is 0.

\2TH

Anonymous Spoonbill 1y #487cbe
<+ Replying to Anonymous Aardvark

Ok, then does andi only compare the last digit of rs1 or does it compare every digit and
then just store the last value
Q) e

Anonymous Aardvark 1y #487cbf
““ Replying to Anonymous Spoonbill

it compares every bit but technically the immediate 1 is 000001 with arbitrary leading
Os
@ eee

Anonymous Sardine 1y #487ceb
“ Replying to Anonymous Spoonbill
andi'ing:

0b1101100001

and

0b0000000001

looks at the first starting bit of each and puts that in that digits place.

So the MSB of both would be 0, because 1and0 = 0. The next bit after the MSB looks at
1andO0 again. Only the LSB of both has 1and1
@ .oe

https://edstem.org/us/courses/43491/discussion/3527328?comment=8272237
https://edstem.org/us/courses/43491/discussion/3527328?comment=8272237
https://edstem.org/us/courses/43491/discussion/3527328?comment=8217872
https://edstem.org/us/courses/43491/discussion/3527328?comment=8217872
https://edstem.org/us/courses/43491/discussion/3527328?comment=8229634
https://edstem.org/us/courses/43491/discussion/3527328?comment=8229634
https://edstem.org/us/courses/43491/discussion/3527328?comment=8265924
https://edstem.org/us/courses/43491/discussion/3527328?comment=8265924
https://edstem.org/us/courses/43491/discussion/3527328?comment=8267777
https://edstem.org/us/courses/43491/discussion/3527328?comment=8267777
https://edstem.org/us/courses/43491/discussion/3527328?comment=8265924
https://edstem.org/us/courses/43491/discussion/3527328?comment=8268253
https://edstem.org/us/courses/43491/discussion/3527328?comment=8268253
https://edstem.org/us/courses/43491/discussion/3527328?comment=8267777
https://edstem.org/us/courses/43491/discussion/3527328?comment=8268268
https://edstem.org/us/courses/43491/discussion/3527328?comment=8268268
https://edstem.org/us/courses/43491/discussion/3527328?comment=8268253
https://edstem.org/us/courses/43491/discussion/3527328?comment=8271602
https://edstem.org/us/courses/43491/discussion/3527328?comment=8271602
https://edstem.org/us/courses/43491/discussion/3527328?comment=8268253

Anonymous Reindeer 1y #487ab = v Resolved

SU23-MT-2.16:

why is init_users on stack, even though it is a pointer (I thought it would be on the heap)?

@ Andrew Liu sTaFF 1y #487ae

Not all pointers are on the heap, for example

creates the pointer y on the stack.

For this case in particular, remember that function arguments are pushed onto the stack by
a program, so 1ib is on the stack.

D1

Anonymous Reindeer 1y #487bc

Could you explain why in the example you gave, pointery is on the stack?
@ eee

Justin Yokota sTaFF 1y #487ea
4 Replying to Anonymous Reindeer
X is on the stack

y points to x

Therefore, y points to the stack.
Q2 e

Anonymous Reindeer 1y #487eb
“ Replying to Justin Yokota
Thank you!

QO e

Anonymous Reindeer 1y #487aa = v Resolved

SU23-MT-2:

what does &lib->users[i] mean, and how is it different from lib->users[i], and lib->users?

@ Andrew Liu sTAFF 1y #487af

&lib->users[i] ="The address of the 1 th element of the users array in the structure
lib"
lib->users[i] ="The 1ith element of the users array in the structure lib"

lib->users ="The users array in the structure 1ib"
02

Anonymous Reindeer 1y #487bb

https://edstem.org/us/courses/43491/discussion/3527328?comment=8209875
https://edstem.org/us/courses/43491/discussion/3527328?comment=8209875
https://edstem.org/us/courses/43491/discussion/3527328?comment=8211411
https://edstem.org/us/courses/43491/discussion/3527328?comment=8211411
https://edstem.org/us/courses/43491/discussion/3527328?comment=8217722
https://edstem.org/us/courses/43491/discussion/3527328?comment=8217722
https://edstem.org/us/courses/43491/discussion/3527328?comment=8248543
https://edstem.org/us/courses/43491/discussion/3527328?comment=8248543
https://edstem.org/us/courses/43491/discussion/3527328?comment=8217722
https://edstem.org/us/courses/43491/discussion/3527328?comment=8248570
https://edstem.org/us/courses/43491/discussion/3527328?comment=8248570
https://edstem.org/us/courses/43491/discussion/3527328?comment=8248543
https://edstem.org/us/courses/43491/discussion/3527328?comment=8209840
https://edstem.org/us/courses/43491/discussion/3527328?comment=8209840
https://edstem.org/us/courses/43491/discussion/3527328?comment=8211863
https://edstem.org/us/courses/43491/discussion/3527328?comment=8211863
https://edstem.org/us/courses/43491/discussion/3527328?comment=8217715
https://edstem.org/us/courses/43491/discussion/3527328?comment=8217715

Thank you!
\2TH

Abhi Pomalapally 1y #487f =« Resolved
SU23-MT-Q1.8:

In big endian, would it change the way x is stored, and put the 01 on the left? Why is x still
represented the same way in 1.8 (big-endian) as it is in 1.7 (little endian)?

@ Andrew Liu sTarF 1y #487ad

Yep! Endianness is all about the ordering in memory; x will always be 0b00000101, but the
memory addresses assigned to each byte are different between systems.

Abhi Pomalapally 1y #487ba

Thank you!
@ cee

Anonymous Swan 1y #487aff

How did you find the memory bytes of x to be: 0b00000101
@ cee

Anonymous Snake 1y #487cad
For this problem in particular,

it shouldn't matter if it's little endian or big endian right? Since 0xA7 is 'one byte'?
\2TH

Anonymous Armadillo 1y #487c = v Resolved

SP23-MT-Q1.11

for the representation of "oIN00" shouldnt \00 be the least significant byte, since its on the right?

Im just confused as to how we got the reverse order, rather than 0x65212100
\2RTE

Justin Yokota sTAFF 1y #487d

Remember that the system is little endian!

Anonymous Goat 1y #487e
Shouldn't that be 6F? | think o is Ox6F in ASCII though while 65 is for e right?
Q2 e

Anonymous Cat 1y #487cc

“ Replying to Anonymous Goat

yeah | think it's another mistake in the solutions
D1

https://edstem.org/us/courses/43491/discussion/3527328?comment=8209195
https://edstem.org/us/courses/43491/discussion/3527328?comment=8209195
https://edstem.org/us/courses/43491/discussion/3527328?comment=8211319
https://edstem.org/us/courses/43491/discussion/3527328?comment=8211319
https://edstem.org/us/courses/43491/discussion/3527328?comment=8217708
https://edstem.org/us/courses/43491/discussion/3527328?comment=8217708
https://edstem.org/us/courses/43491/discussion/3527328?comment=8256628
https://edstem.org/us/courses/43491/discussion/3527328?comment=8256628
https://edstem.org/us/courses/43491/discussion/3527328?comment=8267897
https://edstem.org/us/courses/43491/discussion/3527328?comment=8267897
https://edstem.org/us/courses/43491/discussion/3527328?comment=8170548
https://edstem.org/us/courses/43491/discussion/3527328?comment=8170548
https://edstem.org/us/courses/43491/discussion/3527328?comment=8170604
https://edstem.org/us/courses/43491/discussion/3527328?comment=8170604
https://edstem.org/us/courses/43491/discussion/3527328?comment=8205311
https://edstem.org/us/courses/43491/discussion/3527328?comment=8205311
https://edstem.org/us/courses/43491/discussion/3527328?comment=8241085
https://edstem.org/us/courses/43491/discussion/3527328?comment=8241085
https://edstem.org/us/courses/43491/discussion/3527328?comment=8205311

Robert Yang 1y #487acf

4+ Replying to Anonymous Goat

Yeah | got 6F as well | was so confused lol
1

Anonymous Dove 1y #487bea

<+ Replying to Robert Yang

Regarding 1.10, are you including "I" in the calculations if so wouldn't that be the
correct answer since we are storing in little-endian? Or is this another mistake within
the solutions?

@ eee

Anonymous Dragonfly 1y #487bfb

S0 is 0x0021216F the correct order or 0x6F212100? | know we're in little endian but |
still don't see why 0x0021216F is correct

@2

Anonymous Duck 1y #487fab

“ Replying to Anonymous Dragonfly

didn't they treat it as big endian in the part before that?
@ eee

Anonymous Pheasant 1y #487aabc
4+ Replying to Anonymous Dragonfly
The correct answer is 0x0021216F.

In little endian the lowest sig byte is stored at the lowest address.

Notice that when we write:
"hello!N\0", we write it in such a way that 'h' is stored at the lowest address. (and the null
terminator is at the highest)

So, in our sequence "o!N0", we get that '0' is the least sig digit = Ox6F.

\0'is at the highest address, so it's the most sig digit in our number = 0x00.
@ eee

Anonymous Armadillo 1y #487a =+ Resolved

Where can | look for past Sp23 midterm 1?
D e

Justin Yokota sTarF 1y #487b

SP 23 had only one midterm (as with this semester). We've placed that midterm under the
column "midterm 2".

Q) e

https://edstem.org/us/courses/43491/discussion/3527328?comment=8254924
https://edstem.org/us/courses/43491/discussion/3527328?comment=8254924
https://edstem.org/us/courses/43491/discussion/3527328?comment=8205311
https://edstem.org/us/courses/43491/discussion/3527328?comment=8263417
https://edstem.org/us/courses/43491/discussion/3527328?comment=8263417
https://edstem.org/us/courses/43491/discussion/3527328?comment=8254924
https://edstem.org/us/courses/43491/discussion/3527328?comment=8265564
https://edstem.org/us/courses/43491/discussion/3527328?comment=8265564
https://edstem.org/us/courses/43491/discussion/3527328?comment=8286930
https://edstem.org/us/courses/43491/discussion/3527328?comment=8286930
https://edstem.org/us/courses/43491/discussion/3527328?comment=8265564
https://edstem.org/us/courses/43491/discussion/3527328?comment=8292650
https://edstem.org/us/courses/43491/discussion/3527328?comment=8292650
https://edstem.org/us/courses/43491/discussion/3527328?comment=8265564
https://edstem.org/us/courses/43491/discussion/3527328?comment=8158887
https://edstem.org/us/courses/43491/discussion/3527328?comment=8158887
https://edstem.org/us/courses/43491/discussion/3527328?comment=8159158
https://edstem.org/us/courses/43491/discussion/3527328?comment=8159158

