You are viewing this thread in readonly mode.

[Midterm] Past Exams - 2022 #883

Jero Wang ApmiN 1,829
2 years ago in Exam - Midterm VIEWS

You can find the past exams here: https://cs61c.org/sp23/resources/exams/. Please check the
linked past Piazza/Ed Q&A PDFs first before asking here. Many of the questions are already
answered in those!

When posting questions, please reference the semester, exam, and question in this format so
it's easier for students and staff to search for similar questions:

Semester-Exam-Question Number

For example: SP22-Final-Q1, or SU22-MT-Q3

Anonymous Herring 2y #883ebf =+ Resolved
SP22-MT-Q3

line8: would Vector and *malloc be the same as the solution?

Solution:
7 Vector *transform(Vector *self, int (*f)(int)) {
8 Vector®* newVector = malloc(sizeof(Vector));
9 newVector -> x = f(self->x);
10 newVector -> y = f(self->y);
11 return newVector;
12 1}
@ .

Erik Yang 1A 2y #883ecb

no, because the function wants us to return a vector pointer, so you have to retain the
Vector* from the malloc call

Anonymous Herring 2y #883ebc =« Resolved
SP22-MT-Q3.2

https://edstem.org/us/courses/32705/discussion/2649320
https://edstem.org/us/courses/32705/discussion/2649320
https://cs61c.org/sp23/resources/exams/
https://edstem.org/us/courses/32705/discussion/2649320?comment=6268404
https://edstem.org/us/courses/32705/discussion/2649320?comment=6268404
https://edstem.org/us/courses/32705/discussion/2649320?comment=6268496
https://edstem.org/us/courses/32705/discussion/2649320?comment=6268496
https://edstem.org/us/courses/32705/discussion/2649320?comment=6267852
https://edstem.org/us/courses/32705/discussion/2649320?comment=6267852

1| transform:

2 sp sp -16
3 ra, 0(Csp)

4 sO, 4(sp)

5 sl, 8(sp)

6 s2, 12(sp)
7 mv sO0, a0l

8 mv sl, al

9 li a0, 8

L0 ra malloc
11 mv s2, a0

12 a0, 0(s0)

13 ra, sl, O
14 a0, 0(s2)

15 a0, 4(s0)

16 ra, sl1, O
17 a0, 4(s2)

|8 mv a0, s2

9 ra, 0(Csp)
20 sO, 4(sp)

Al sl, 8(sp)

22 s2, 12(sp)
23 sp sp 16
24

for sp22 3.2 why are we storing s registers? Aren't we the caller for malloc?
e isit because we are also a callee from whereever its calling from and are using s registers?

which means we could also store other registers thats not s?
@ .o

Erik Yang 1A 2y #883ebd

if you use any sort of s registers, since they are callee saved registers, you have to store them
on stack before you can start using them
\2TH

Anonymous Herring 2y #883ebe

https://edstem.org/us/courses/32705/discussion/2649320?comment=6268014
https://edstem.org/us/courses/32705/discussion/2649320?comment=6268014
https://edstem.org/us/courses/32705/discussion/2649320?comment=6268088
https://edstem.org/us/courses/32705/discussion/2649320?comment=6268088

what does s2 store after malloc? is it a pointer to the memory? from what | see in the
code, it assumes that a0 after malloc returns is the self vector. Why is that?
@ cee

Erik Yang TA 2y #883eca
““ Replying to Anonymous Herring

yup it stores the memory that was malloced in a0. Usually, a0 is the output for
functions. So the code moves that output to s2.
@ eee

Anonymous Salmon 2y #883ead @ v Resolved

SP22-MT-Q2.5

Q2.5 (3 points) What is the smallest positive number that can be represented by this system?

Express your answer as an odd integer multiplied by a power of 2.

Solution:

Smallest significand = 0b0001

Smallest exponent = 0b000 =0 + (—3) + 1= —2
0.0001 x 272 =1x276

Why is the smallest exponent 0 + (-3) + 1 instead of just 0 + (-3)?
Q) e

Nikhil Kandkur TA 2y #883eae

We are working with denormalized numbers here so we have to add 1 to the exponent.

Anonymous Echidna 2y #883dff = v Resolved
Sp22-mt-q4.2

For line 12, why can't you use mv instead of Iw? Or does either work?

Erik Yang TA 2y #883eaa

You're trying to load one element of the array into a0 while mv moves the entire register into
a0 so it wouldn't be the same

Anonymous Echidna 2y #883eac

Got it, thanks! And just to clarify; say the first element of a struct is a char, we would do
load byte instead, right?
@ cee

Erik Yang TA 2y #883eaf

4 Replying to Anonymous Echidna
Yes!

D1

Anonymous Dogfish 2y #883dfc = v Resolved
SP22-mt-Q4.2

https://edstem.org/us/courses/32705/discussion/2649320?comment=6268475
https://edstem.org/us/courses/32705/discussion/2649320?comment=6268475
https://edstem.org/us/courses/32705/discussion/2649320?comment=6268088
https://edstem.org/us/courses/32705/discussion/2649320?comment=6265055
https://edstem.org/us/courses/32705/discussion/2649320?comment=6265055
https://edstem.org/us/courses/32705/discussion/2649320?comment=6266517
https://edstem.org/us/courses/32705/discussion/2649320?comment=6266517
https://edstem.org/us/courses/32705/discussion/2649320?comment=6264892
https://edstem.org/us/courses/32705/discussion/2649320?comment=6264892
https://edstem.org/us/courses/32705/discussion/2649320?comment=6264936
https://edstem.org/us/courses/32705/discussion/2649320?comment=6264936
https://edstem.org/us/courses/32705/discussion/2649320?comment=6265013
https://edstem.org/us/courses/32705/discussion/2649320?comment=6265013
https://edstem.org/us/courses/32705/discussion/2649320?comment=6266860
https://edstem.org/us/courses/32705/discussion/2649320?comment=6266860
https://edstem.org/us/courses/32705/discussion/2649320?comment=6265013
https://edstem.org/us/courses/32705/discussion/2649320?comment=6264313
https://edstem.org/us/courses/32705/discussion/2649320?comment=6264313

Inline 13 and 16, what is ra here?
@ .

Erik Yang TA 2y #883dfd

Ra is the ra address, it tells the function where to return to after it is done executing

Anonymous Sardine 2y #883dfa = v Resolved
su22-mt-q4

For 4.1, it feels like we need to return the sum of all the even numbers by storing that value in a0.
Since t0 is the running sum, it seems like we therefore need to move the value of t0 into a0.
Maybe a line like 1i a0 to.However, the solution directly returns without storing the value of t0
into a0, which should mean that it is returning a pointer to the end of the array, rather than the
value of the sum of all the even numbers. Why does the solution feel no need to move the
running sum into a0 if the expected output is the sum of even values in the array?

add_even_numbers:

addi t0, x0, O # set t0 to be the running sum
loop:
beq al x0 end
1w t1 0Ca0) # set tl to be the number in the array

andi t2 tl1 1
beq t2 x0 pass
add t0 t0 t1
pass:
addi a0 a0 4
addi al al -1
j loop
end:
ret

Jero Wang Abmin 2y #883dfb

#883ade
O .

Anonymous Goldfinch 2y #883ded @ v/ Resolved

su22-mt-g2.3: why is it invalid if somethings are not initialized? could it potentially have bad
behavior?

Erik Yang TA 2y #883dee

Yeah since not all the pointers are initialized in the next array, that means we will have
undefined behavior if we ever try to do something with some of those pointers inside next
that haven't been initialized

Anonymous Red panda 2y #883ddb ' + Resolved
su22-mt-q4

for 4.1, why don't we do the line addi a0 a0 4 in the add_even_numbers block as well because
don't we want to move the pointer regardless if it's an even or odd number?

https://edstem.org/us/courses/32705/discussion/2649320?comment=6264777
https://edstem.org/us/courses/32705/discussion/2649320?comment=6264777
https://edstem.org/us/courses/32705/discussion/2649320?comment=6263427
https://edstem.org/us/courses/32705/discussion/2649320?comment=6263427
https://edstem.org/us/courses/32705/discussion/2649320?comment=6263577
https://edstem.org/us/courses/32705/discussion/2649320?comment=6263577
https://edstem.org/us/courses/32705/discussion/threads/883ade
https://edstem.org/us/courses/32705/discussion/2649320?comment=6259498
https://edstem.org/us/courses/32705/discussion/2649320?comment=6259498
https://edstem.org/us/courses/32705/discussion/2649320?comment=6262118
https://edstem.org/us/courses/32705/discussion/2649320?comment=6262118
https://edstem.org/us/courses/32705/discussion/2649320?comment=6258325
https://edstem.org/us/courses/32705/discussion/2649320?comment=6258325

Jero Wang AbMmIN 2y #883dec
Itis in the add_even_numbers function, just part of the loop within the function. The line you
mentioned gets executed regardless if the number is odd or even (if even, it adds, then goes

to the line you mentioned, if odd, it branches to pass, which is the line that you mentioned).

Vishnu Suresh 2y #883dce = v/ Resolved
SU22-MT-Q3.6

Could someone explain how we got 2/5 — 2A-6 for this. | did not understand the step size logic
used in the solution.

Eric Kusnanto TA 2y #883dde

215 - 216 refers to a float with exponent bits = 4 and a mantissa of all 1s (1.111....) This can
be calculated based on the power of two that the LSB is at, also known as step size. Similar to
how you can calculate an unsigned int 0b01111 as 0b10000 - 0b00001 (274 - 2A0), we can
extend this to calculate our float as 2A5 - step size instead of adding 10 powers of two
together. Step size can be found for normalized floats as 2/(exp + bias) / 2~n, where n = # of
mantissa bits

Anonymous Salmon 2y #883dbb v Resolved
SU22-MT-Q4.2

How do we get the answer oxFDDFF for the immediate bit? | know someone asked a similar
question but it doesn't address my specific concern where I'm just having trouble translating to
two's complement. Here is my work:

To represent -36 in binary, we want to find 36 in binary, flip its bits, then add 1.

36 =32+ 4=2A5+2/2,so we can represent it as: 0b 0000 0000 0000 0010 0100, S0 -36iS
represented in 2's complement as ob 1111 1111 1111 1101 1100.Now I'm trying to grab the

bits corresponding to 20, 10:1, 11, 19:12 and then stack them according to how immediates
are stored in the instruction.

| get the 20th bitis 1, bits 19:12 are 111 1111 1, bit11is 1, and bits 10:1 are 11 1101 1100 by
just taking these directly from -36 in 2's complement.

Stacking these together, | get
Ob 1 | 11 1101 1100 | 1 | 111 1111 1 whichisimm[20] | imm[10:1] | imm[11] | imm[19:12].

Translating this to hexadecimal, I get 6b 1111 1011 1001 1111 1111 whichis ©x FD9FF which is
pretty close to the answer of exFDDFF, but I'm not sure where | went wrong

Erik Yang TA 2y #883dbc

remember bits are zero indexed, so bit 20 is actually isatOb 1111 1111 1011 1001 1111 1111

Anonymous Salmon 2y #883dbd
Isn't the thing you wrote 24 bits instead of 20?7 Shouldn't the immediate just be 20 bits?

https://edstem.org/us/courses/32705/discussion/2649320?comment=6259426
https://edstem.org/us/courses/32705/discussion/2649320?comment=6259426
https://edstem.org/us/courses/32705/discussion/2649320?comment=6258131
https://edstem.org/us/courses/32705/discussion/2649320?comment=6258131
https://edstem.org/us/courses/32705/discussion/2649320?comment=6259209
https://edstem.org/us/courses/32705/discussion/2649320?comment=6259209
https://edstem.org/us/courses/32705/discussion/2649320?comment=6257188
https://edstem.org/us/courses/32705/discussion/2649320?comment=6257188
https://edstem.org/us/courses/32705/discussion/2649320?comment=6257660
https://edstem.org/us/courses/32705/discussion/2649320?comment=6257660
https://edstem.org/us/courses/32705/discussion/2649320?comment=6257676
https://edstem.org/us/courses/32705/discussion/2649320?comment=6257676

Qe

Erik Yang TA 2y #883dbe

“ Replying to Anonymous Salmon

well -9 is gonna be a 32 bit integer, but you only use bits 1-20 for the imm in the risc v
instruction

O .

Anonymous Salmon 2y #883dcb

““ Replying to Erik Yang

Gotcha! And in general if I'm given an immediate like exFDDFF for a j-type instruction, |
also have to do this process in reverse to recover imm[20] | imm[10:1] | imm[11] |
imm[19:12], stack it in the correct order of imm[20] | imm[19:12] | imm[11] |
imm[10:1] and then convert that back to decimal?

@ cee

Erik Yang TA 2y #883dcc
< Replying to Anonymous Salmon

if you're given OxFDDFF, then you reverse the stacking basically so the first bit of the
imm goes into the 20th position, etc.., so yeah you're right. And then make sure you
know if it's gonna be sign extended or not to 32 bits

D1

Anonymous Salmon 2y #883dcd

<+ Replying to Erik Yang

How do we know if it's gonna be sign extended or not? Or do you know which lecture |
could look at to figure this out?

And when | recover the immediate | guess | just have to look at the sign or zero-
extended 32 bit integer and convert that back to decimal?

Also what happens to the bit at position 0?7 Does sign/zero extending apply to that as
well, or is it just for bits 21-31?
\2TH

Erik Yang 1A 2y #883dcf
“ Replying to Anonymous Salmon
hmm i tried looking for it in lecture. i know i-types are always sign extended, but i'm

actually not sure for the others. Sign extension only applies to bits 21-31. You could ask
in OH tom!

\2TH

Anonymous Trout 2y #883dad v Resolved
SP22-MT-Q3.4
What does the solution mean by "#define statements are effectively find-and-replaces?" Does that

mean we do not evaluate the operand before a function call in C?

https://edstem.org/us/courses/32705/discussion/2649320?comment=6257693
https://edstem.org/us/courses/32705/discussion/2649320?comment=6257693
https://edstem.org/us/courses/32705/discussion/2649320?comment=6257676
https://edstem.org/us/courses/32705/discussion/2649320?comment=6257851
https://edstem.org/us/courses/32705/discussion/2649320?comment=6257851
https://edstem.org/us/courses/32705/discussion/2649320?comment=6257693
https://edstem.org/us/courses/32705/discussion/2649320?comment=6257890
https://edstem.org/us/courses/32705/discussion/2649320?comment=6257890
https://edstem.org/us/courses/32705/discussion/2649320?comment=6257851
https://edstem.org/us/courses/32705/discussion/2649320?comment=6257903
https://edstem.org/us/courses/32705/discussion/2649320?comment=6257903
https://edstem.org/us/courses/32705/discussion/2649320?comment=6257890
https://edstem.org/us/courses/32705/discussion/2649320?comment=6258222
https://edstem.org/us/courses/32705/discussion/2649320?comment=6258222
https://edstem.org/us/courses/32705/discussion/2649320?comment=6257903
https://edstem.org/us/courses/32705/discussion/2649320?comment=6256973
https://edstem.org/us/courses/32705/discussion/2649320?comment=6256973

Erik Yang TA 2y #883dae
yeah, this means that 0 + 1 will not be evaluated since we are replacing that with a in the
define statement; so that's why it willbe 0+ 1*10/4 and not1* 10/ 4.

Anonymous Trout 2y #883daf

Does this rule apply to all C code? For example, suppose h is a one-argument function,
would f(h(x), h(y)) be h(x) + h(y)/4, with h(x) and h(y) not evaluated until we run the
function?

O .

Erik Yang TA 2y #883dba

“ Replying to Anonymous Trout

If fis a defined statement then yeah
\2TH

Anonymous Cheetah 2y #883dbf
“ Replying to Erik Yang
Why does the b get evaluated to 10, but the 0 + 1 equation does not? How do we know

what we should and shouldn't evaluate with these define replacements?
Q) e

Erik Yang TA 2y #883dca
<+ Replying to Anonymous Cheetah

so what define does is it finds what the a and b arguments are for f, and then replaces
them with what they are. So it will see "0 + 1" and replace that for a, and then it sees
"10" and replaces that with b. This givesyou0+1*10/4

D1

Anonymous Salmon 2y #883cfc = v Resolved

SU22-MT-Q4.1

Q4.1 (15 points) Fill in the blanks in the RISC-V code below. You may not need all the blanks. Each line
should contain exactly one instruction or pseudo-instruction.

add_even_numbers:
addi t0, x0, O # set t0 to be the running sum
loop:
beq al x0 end
1w t1 0Ca0d) # set tl to be the number in the array

andi t2 t1 1
beq t2 x0 pass
add t0 t0 t1
pass:
addi a0 a0 4
addi al al -1
j loop
end:
ret

Why does anding t1 with 1 ,then beq t2 x0 pass checkif t1 is odd? | think that what we
should care about/look at is the LSB of t1 and check if that's 0 (even) or 1 (odd), but | feel like
andi t2 t1 1 will justreturn t1 back which isn't necessarily the same as xo if t1 is odd

https://edstem.org/us/courses/32705/discussion/2649320?comment=6257038
https://edstem.org/us/courses/32705/discussion/2649320?comment=6257038
https://edstem.org/us/courses/32705/discussion/2649320?comment=6257070
https://edstem.org/us/courses/32705/discussion/2649320?comment=6257070
https://edstem.org/us/courses/32705/discussion/2649320?comment=6257171
https://edstem.org/us/courses/32705/discussion/2649320?comment=6257171
https://edstem.org/us/courses/32705/discussion/2649320?comment=6257070
https://edstem.org/us/courses/32705/discussion/2649320?comment=6257761
https://edstem.org/us/courses/32705/discussion/2649320?comment=6257761
https://edstem.org/us/courses/32705/discussion/2649320?comment=6257171
https://edstem.org/us/courses/32705/discussion/2649320?comment=6257805
https://edstem.org/us/courses/32705/discussion/2649320?comment=6257805
https://edstem.org/us/courses/32705/discussion/2649320?comment=6257761
https://edstem.org/us/courses/32705/discussion/2649320?comment=6256691
https://edstem.org/us/courses/32705/discussion/2649320?comment=6256691

Erik Yang 1A 2y #883cfd

#883bb
e

Anonymous Salmon 2y #883cfe

| think my question still applies even if they have a bne, | just don't really understand
what the andi t2 t1 1 does because | feel like this just gives us t1 back, which in
general will not be o

@ cee

Erik Yang 1A 2y #883cff
<+ Replying to Anonymous Salmon

x & 1 produces a value that is either 1 or o, depending on the least significant bit of
x :if the last bitis 1, the resultof x & 1 is 1; otherwise, itis ©. This is a bitwise AND
operation

@ S

Anonymous Salmon 2y #883daa

<+ Replying to Erik Yang

If we had x represented as 101 (5 in decimal), then wouldn't x & 1 give 010 which is
2?

@ eee

Erik Yang Ta 2y #883dab
4 Replying to Erik Yang
If you think about it like Ob110001 being t1, then andi t2 t1 1 would be 0b110001 &

0b000001 which means all the ands with zero will be come zero and the Isb being 1 will
be 1

Q1

Anonymous Salmon 2y #883dac

4 Replying to Erik Yang

Ohhhhh, that makes a lot more sense! Thanks
@ cee

Anonymous Hare 2y #883cde @ v Resolved

This is more of a conceptual question, but why do we not care about the hold time when finding
the minimum clock period?

Rosalie Fang AbMmIN 2y #883ced

hold time is the time after rising edge of the clock where input has to stay constant, which
happens at the same time as the clk-to-q time - no output wire is dependent on the hold
time, as long as the rule is upheld.

D1

Anonymous Quetzal 2y #883cdc = v Resolved
SU22-MT-Q4.2

| don't understand how we go from -36 in decimal to "OxFDDFFO6F". Are we not suppose to use
2's complement to calculate the hexadecimal representation?

https://edstem.org/us/courses/32705/discussion/2649320?comment=6256722
https://edstem.org/us/courses/32705/discussion/2649320?comment=6256722
https://edstem.org/us/courses/32705/discussion/threads/883bb
https://edstem.org/us/courses/32705/discussion/2649320?comment=6256742
https://edstem.org/us/courses/32705/discussion/2649320?comment=6256742
https://edstem.org/us/courses/32705/discussion/2649320?comment=6256835
https://edstem.org/us/courses/32705/discussion/2649320?comment=6256835
https://edstem.org/us/courses/32705/discussion/2649320?comment=6256742
https://edstem.org/us/courses/32705/discussion/2649320?comment=6256864
https://edstem.org/us/courses/32705/discussion/2649320?comment=6256864
https://edstem.org/us/courses/32705/discussion/2649320?comment=6256835
https://edstem.org/us/courses/32705/discussion/2649320?comment=6256868
https://edstem.org/us/courses/32705/discussion/2649320?comment=6256868
https://edstem.org/us/courses/32705/discussion/2649320?comment=6256835
https://edstem.org/us/courses/32705/discussion/2649320?comment=6256956
https://edstem.org/us/courses/32705/discussion/2649320?comment=6256956
https://edstem.org/us/courses/32705/discussion/2649320?comment=6256868
https://edstem.org/us/courses/32705/discussion/2649320?comment=6253315
https://edstem.org/us/courses/32705/discussion/2649320?comment=6253315
https://edstem.org/us/courses/32705/discussion/2649320?comment=6254590
https://edstem.org/us/courses/32705/discussion/2649320?comment=6254590
https://edstem.org/us/courses/32705/discussion/2649320?comment=6252573
https://edstem.org/us/courses/32705/discussion/2649320?comment=6252573

Q4.2 (5 points) Translate the j loop instruction under the skip label to hexadecimal. Assume that

every line in the above code is filled with exactly one instruction (or pseudo-instruction that
expands to one instruction).

Solution: 0xFDDFFOGF

Optionally, for partial credit, write the offset in bytes as a decimal number in the box below.

Solution: -36

The line of code labeled loop is 9 instructions before the j loop instruction.

#%%. Gina Choi 2y #883cdd

we don't just do -36! we also have to include the entire instruction in hex as well

Anonymous Quetzal 2y #883cdf
Thank you!

Anonymous Porcupine 2y #883ccf = v Resolved

SP22-MT-Q3

May | ask when are the characters interpreted as boolean logic and when are they interpreted as
performing math computations? Thanks!

Rosalie Fang AbmIN 2y #883cee

Depending on the context. If you have code, like in this question, follow the C convention
(and will be &, or will be |, not will be ~, and xor will be A). Only when you have a Boolean
logic question you can use (+, |, *) as Boolean logic.

Anonymous Salmon 2y #883ebb

So just to clarify, are the &, |, ~, * justapplied to logical values like a & b = true
iff a = true, b = true ordowereaditas a & b is a bitwise operation that &s both
aand b?

Anonymous Goose 2y #883cce = v/ Resolved

SP22-MT-Q2.5

https://edstem.org/us/courses/32705/discussion/2649320?comment=6252591
https://edstem.org/us/courses/32705/discussion/2649320?comment=6252591
https://edstem.org/us/courses/32705/discussion/2649320?comment=6253696
https://edstem.org/us/courses/32705/discussion/2649320?comment=6253696
https://edstem.org/us/courses/32705/discussion/2649320?comment=6252250
https://edstem.org/us/courses/32705/discussion/2649320?comment=6252250
https://edstem.org/us/courses/32705/discussion/2649320?comment=6254620
https://edstem.org/us/courses/32705/discussion/2649320?comment=6254620
https://edstem.org/us/courses/32705/discussion/2649320?comment=6267578
https://edstem.org/us/courses/32705/discussion/2649320?comment=6267578
https://edstem.org/us/courses/32705/discussion/2649320?comment=6252237
https://edstem.org/us/courses/32705/discussion/2649320?comment=6252237

Q2.6 (3 points) Translate the following RISC-V instruction into its corresponding hexadecimal value.
ori t6 s0 -12

Solution: FF446793

opcode = 0b001 0011

funct3 = 0b110

rd=t6=x31=0bl11111

rsl =s0=x8=0b01000

imm=—-12=0b1111 1111 0100
0b111111110100 01000 110 11111 0010011
0Ob1111 1111 0100 0100 0110 1111 1001 0011
0xFF44 6F93

is there a typo here? the solution says OxFF446793 but the final line says OxFF446F93

@ Gina Choi 2y #883cdb

*" yeah i asked apparently it's a typo
1

Anonymous Peafowl 2y #883ccd v Resolved

SU22-MT-Q2.5

Could anyone explain it in detail, especially when the realloc does change the pointer?
1

Rosalie Fang abmin 2y #883cfa

When you call realloc and it changes the pointer, the memory address at the old node is
freed. We should not be able to access node->next[i] in the second for loop.

Anonymous Peafow| 2y #883ddf

Do you mean that we cannot access a freed memory address?

Jero Wang AbmIN 2y #883deb
A Replying to Anonymous Peafowl
Yes, you cannot access a free'd memory address.

Anonymous Marten 2y #883ccc = v Resolved

SP22-MT-4.2

Q4.2 (20 points) Translate the transform function to RISC-V. The function takes inputs self in a0
and f in al, and returns output in a0. You may assume that Vector is as defined in the C code.
You may also assume that you have access to malloc, and that malloc and f each receive their
argument in a0, and return their result in a0. Your solution MUST fit within the lines provided.

https://edstem.org/us/courses/32705/discussion/2649320?comment=6252566
https://edstem.org/us/courses/32705/discussion/2649320?comment=6252566
https://edstem.org/us/courses/32705/discussion/2649320?comment=6252102
https://edstem.org/us/courses/32705/discussion/2649320?comment=6252102
https://edstem.org/us/courses/32705/discussion/2649320?comment=6254723
https://edstem.org/us/courses/32705/discussion/2649320?comment=6254723
https://edstem.org/us/courses/32705/discussion/2649320?comment=6259216
https://edstem.org/us/courses/32705/discussion/2649320?comment=6259216
https://edstem.org/us/courses/32705/discussion/2649320?comment=6259421
https://edstem.org/us/courses/32705/discussion/2649320?comment=6259421
https://edstem.org/us/courses/32705/discussion/2649320?comment=6259216
https://edstem.org/us/courses/32705/discussion/2649320?comment=6252009
https://edstem.org/us/courses/32705/discussion/2649320?comment=6252009

1| transform:

2 sp sp -16
3 ra, 0(Csp)

4 sO, 4(sp)

5 sl, 8(sp)

6 s2, 12(sp)
7 mv sO0, a0

8 mv sl, al

9 li a0, 8

10 ra malloc
11 mv s2, a0

12 a0, 0(s0)
13 ra, sl, 0
14 a0, 0(s2)
15 a0, 4(s0)
16 ra, sl, 0
17 a0, 4(s2)
18 mv a0, s2

19 ra, 0(sp)
20 sO, 4(sp)
21 sl, 8(sp)
22 s2, 12(sp)
23 sp sp 16
24

For this question do we assume that Vector is just a pointer to two consecutive ints in memory,
which is why we only malloc 8 bytes?
@ eee

Rosalie Fang ApmIN 2y #883cef

typedef struct Vector {
int x;
int y;

} Vector;

This is from the same question. Since this is a struct, x and y should be consecutive in
memory.
\2RTH

https://edstem.org/us/courses/32705/discussion/2649320?comment=6254647
https://edstem.org/us/courses/32705/discussion/2649320?comment=6254647

Anonymous Salmon 2y #883ccb v Resolved

SU22-MT-Q3.3

Q3.3 (3 points) How many numbers in the range [16, 64) (including 16, excluding 64) can be represented
by the floating point system described above?

Solution: One way to solve this question is to consider the step size, or distance between
representable numbers, in this range.

Consider the number 16, which can be represented as 0b1.00 0000 0000 x2%. The next-
largest number is 0b1.00 0000 0001 x2*. The distance between these two numbers is
0b0.00 0000 0001 x24=0b0.00 0001 =278

This pattern of representable numbers being 276 apart continues all the way to 0b1.11 1111
1111 x2* = 0b1 1111.1111 1111 =2° — 275 which is just under 32.

In total, in the range [16, 32), we have a range of 16 with representable numbers spaced 276
apart. That’s 16/276 = 2% /276 = 210 numbers that can be represented.

At this point, you can follow the same process to find the step size in the range [32,64). One
shortcut is to note that step size in floating-point always increases by a factor of 2 (intuitively,
you're losing one mantissa bit of precision as you reach higher numbers, so you end up
skipping every other number that would have been representable). The range [32, 64) is twice
as large as [16, 32), but the distance between representable numbers is also twice as large, so
we end up getting another 2!V representable numbers in this range.

In total, we have 210 + 219 = 21! yepresentable numbers in the range [16,64).

In general, given that we have m mantissa bits and an interval [a,b] with a = 24n, b=
20 {n+1}, is the step size between numbers just 24 {-m}*22n ? But the number of representable
numbers should be the length of the interval/step size, which will always give just 24m
representable numbers in any interval [a,b] as described above?

(2n+1 _ 2n) on

27m+n = 2fm+n =2

Rosalie Fang AbmIN 2y #883cec

Yes. another way you can think about it is that all the numbers between [a, b] with a = 2”n, b
=2Mn + 1) will have the same sign and exponent value, and the mantissa bits have all
possible combinations, giving you 2Am.

Anonymous Salmon 2y #883cca = v/ Resolved

SU22-MT-Q2.2

https://edstem.org/us/courses/32705/discussion/2649320?comment=6252000
https://edstem.org/us/courses/32705/discussion/2649320?comment=6252000
https://edstem.org/us/courses/32705/discussion/2649320?comment=6254318
https://edstem.org/us/courses/32705/discussion/2649320?comment=6254318
https://edstem.org/us/courses/32705/discussion/2649320?comment=6251348
https://edstem.org/us/courses/32705/discussion/2649320?comment=6251348

Q2.2 (8 points) insert takes in a trie root node (node), and a pointer to a string (word). It should insert
the word into the trie.

1 void insert(AlphaTrieNode* node, char* word) {
for (int i = 0; 1 < strlen(word); i++) {
int char_to_ascii = (int) word[i] - 97;
if (node->next[char_to_ascii] == NULL) {
node->next[char_to_ascii] = calloc(l, sizeof(AlphaTrieNode));

node = node->next[char_to_ascii];

}

node->last = true;

2
3
4
5
6 }
7
8
9
0

10 }

Why should we be callocing 1 AlphaTrieNode instead of 26? | would think it should be 26 because
you want 1 node per letter, not just 1
\2TE

Rosalie Fang AbmIN 2y #883ceb

This code allocates for node->next[char_to_ascii] if the letter's node has not been allocated
yet. This means that if a letter is not used in this word, that node is not allocated. This code
dynamically allocates AlphaTrieNodes instead of allocating all of them at once.

Anonymous Kudu 2y #883cbd + Resolved

SU22-MT-Q4.3 -- Why do we need to save the s registers in the caller (add_even_numbers)? |
thought the saving of s registers are handled by the callee (is_prime). | always get confused by
this.

\2RTE

Erik Yang TA 2y #883cbf

If you ever use s registers, you need to save them in that function. If you call another
function, you assume that that function saves the s registers it uses as well

D1

Vishnu Suresh 2y #883cbc ~ + Resolved

Sp22-MT-Q4.2 Do jal malloc and jal ra malloc do the same thing. Also, in the same vein, do
jalr ra , s1 , 0 and jalr s1 0 dothe same thing?

O

Erik Yang TA 2y #883cbe

Yes it jsut takes what ra is currently.

Anonymous Gorilla 2y #883caf = v Resolved

sp22-MT-Q2.3: For the exponent why is 3 - (-3) and then in Q2.4 the exponent is 6 + (-3). Why was
there a subtraction in the first one and addition in the second one. Then shouldn't the first one be
3+ (-3)?

Also for Q2.5: For finding the smallest exponent why did is there a +1 at the end. 0 + (-3) + 1

https://edstem.org/us/courses/32705/discussion/2649320?comment=6254270
https://edstem.org/us/courses/32705/discussion/2649320?comment=6254270
https://edstem.org/us/courses/32705/discussion/2649320?comment=6250848
https://edstem.org/us/courses/32705/discussion/2649320?comment=6250848
https://edstem.org/us/courses/32705/discussion/2649320?comment=6251147
https://edstem.org/us/courses/32705/discussion/2649320?comment=6251147
https://edstem.org/us/courses/32705/discussion/2649320?comment=6250720
https://edstem.org/us/courses/32705/discussion/2649320?comment=6250720
https://edstem.org/us/courses/32705/discussion/2649320?comment=6251061
https://edstem.org/us/courses/32705/discussion/2649320?comment=6251061
https://edstem.org/us/courses/32705/discussion/2649320?comment=6248718
https://edstem.org/us/courses/32705/discussion/2649320?comment=6248718

4

Darwin Zhang 2y #883cbb £ ENDORSED

In 2.3, we found our exponent of 1100 (=1.100 * 2A3) is 3, then we subtract the bias (-3) to
get the exponent of 6 (=0b110) to represent in the IEEE-754 system.

Conversely, in 2.4, when we have the largest exponent of 6 (=0b110) in the IEEE-754 format,
we want to add the bias (-3) to get the actual exponent of the largest number that we want to
represent, which 3 in this case.

In 2.5, we want to add one to the smallest exponent bit because the exponent bits are all
zero, so we want to add one to the smallest exponent. (-1)Asign * 0b0.SSSS * 2A(0bXXX + (-3)
+ 1), also known as a denormalized number.

@ .o

Anonymous Lyrebird 2y #883ddc

How do we know when to add bias and when to subtract bias?
@ s

Darwin Zhang 2y #883dea

4+ Replying to Anonymous Lyrebird

Add bias to exponent when converting from IEEE-754 (ObXXXX...) to binary
representation: 0bXXXX... + (bias)

Subtract bias from exponent when converting binary (1.... * 2AX) to IEEE-754: X - (bias)

Keep in mind that in the given question, bias is a negative number.
@ eee

Anonymous Lyrebird 2y #883eba
“ Replying to Darwin Zhang
Thank you!

\2TH

Stella Kaval 2y #883cad v/ Resolved

SU22 MT1 Q3.3: I'm not quite sure how to calculate how many numbers in the range [16, 64) can
be represented by floating point. What is the strategy for using step size for these types of
problems?

D1

Rosalie Fang AbmIN 2y #883cea

The easiest way is probably to convert 16 to floating point, then convert 64 to floating point.
The number of bit combinations between those 2 binary representations will be the number
of representable values because the numbers are in sequential order.

Anonymous Spider 2y #883bfd =+ Resolved
SP22-MT-Q3

Is the content of Q3.3 to Q3.5 in scope? If so, where did we learn about this behavior of define
statements (a reference to the section in lecture would be nice, as | don't recall where we learned
about it!)

@ .o

Jero Wang AbmIN 2y #883bfe
Yes, lecture 3 slide 13

https://edstem.org/us/courses/32705/discussion/2649320?comment=6249926
https://edstem.org/us/courses/32705/discussion/2649320?comment=6249926
https://edstem.org/us/courses/32705/discussion/2649320?comment=6258636
https://edstem.org/us/courses/32705/discussion/2649320?comment=6258636
https://edstem.org/us/courses/32705/discussion/2649320?comment=6259259
https://edstem.org/us/courses/32705/discussion/2649320?comment=6259259
https://edstem.org/us/courses/32705/discussion/2649320?comment=6258636
https://edstem.org/us/courses/32705/discussion/2649320?comment=6267160
https://edstem.org/us/courses/32705/discussion/2649320?comment=6267160
https://edstem.org/us/courses/32705/discussion/2649320?comment=6259259
https://edstem.org/us/courses/32705/discussion/2649320?comment=6248647
https://edstem.org/us/courses/32705/discussion/2649320?comment=6248647
https://edstem.org/us/courses/32705/discussion/2649320?comment=6254175
https://edstem.org/us/courses/32705/discussion/2649320?comment=6254175
https://edstem.org/us/courses/32705/discussion/2649320?comment=6248214
https://edstem.org/us/courses/32705/discussion/2649320?comment=6248214
https://edstem.org/us/courses/32705/discussion/2649320?comment=6248398
https://edstem.org/us/courses/32705/discussion/2649320?comment=6248398

Anonymous Spider 2y #883cae

Where did we learn specifically that #define is effectively a find and replace? | would
like to view that section just to see if there are any other unique properties of #define
I should know about.

Jero Wang AbmIN 2y #883cba

<+ Replying to Anonymous Spider

There's an example on slide 14 of the same lecture.
1

Anonymous Kouprey 2y #883bfc =+ Resolved
SU22-MT-Q4.2

add_even_numbers:

addi t0, x0, 0 # set t0 to be the running sum
loop:
beq al x0 end
1w t1 0(¢a0) # set tl to be the number in the array

andi t2 t1 1
beq t2 x0 pass
add t0 t0 tl1
pass:
addi a0 a0 4
addi al al -1
j loop
end:
ret

Alternate Solution:

add_even_numbers:

addi t0, x0, 0 # set t0 to be the running sum
loop:
beq al, x0, end
1w t1 0Ca0) # set tl to be the number in the array

srli t2, tl1, 1
slli t2, t2, 1
bne tl, t2, pass
add t0, t0, t2
pass:
addi al, al, -1
addi a0, a0, 4
j loop
end:
mv a0, tO0

For the first code solution, it should be 8 lines (-32 bytes offset). In other words, -36 bytes offset is
referring to the alternative code solution, right?

https://edstem.org/us/courses/32705/discussion/2649320?comment=6248695
https://edstem.org/us/courses/32705/discussion/2649320?comment=6248695
https://edstem.org/us/courses/32705/discussion/2649320?comment=6249114
https://edstem.org/us/courses/32705/discussion/2649320?comment=6249114
https://edstem.org/us/courses/32705/discussion/2649320?comment=6248695
https://edstem.org/us/courses/32705/discussion/2649320?comment=6247446
https://edstem.org/us/courses/32705/discussion/2649320?comment=6247446

Jero Wang AbmIN 2y #883bff
No, it says

Assume that every line in the above code is filled with exactly one instruction

So it would always be -36.

Anonymous Kouprey 2y #883cab
| see, so we are not counting labels including "skip" and "loop" since they are not stored
in memory, right?

Jero Wang AbMmIN 2y #883cac
4+ Replying to Anonymous Kouprey
Yes, those are labels and do not take up space in memory.

1

Anonymous Toad 2y #883bfa @ v/ Resolved
For SU22 Q2.4 .

Q2.5 (4 points)

ASCIITrieNode* convert(AlphaTrieNode* node) {
if (node == NULL) {
return NULL;

}
ASCIITrieNode* new_node = realloc(node, sizeof(ASCIITrieNode));

for (int 1 = 0; i < 256; i++) {
new_node->next[i] = NULL;
}
for (int j = 0; j < 26; j++) {
new_node->next[j + 97] = convert(node->next[j]);
}

return new_node;

O (A) Valid @ (B) Invalid

Solution: This implementation is invalid in two different ways, depending on the behavior
of realloc.

Suppose realloc does not change the pointer to node. In other words, new_node holds the
same address as node). This means that the next array of pointers stays in the same place in
memory, but grows in length. In this case, the first for loop sets all the elements in the next
array to NULL. This means that when the second loop tries to read from the same next array,
it doesn’t read the pointers in the original node.

Suppose realloc does change the pointer in the process of reallocation. In other words, the
memory at node is freed, a new, larger block of memory is allocated, and a pointer to this new
memory is placed in new_node. In this case, we encounter the same problem as the malloc
case, where not all the pointers in this new block of memory have been allocated.

Why the we encounter the same problem as the malloc case, where not all pointers in the new
block of memory have been allocated? Didn't we get access to more memory and set all of it null
pointers? Or is it because in the malloc case we overwrote our pointers by setting them to null?

https://edstem.org/us/courses/32705/discussion/2649320?comment=6248422
https://edstem.org/us/courses/32705/discussion/2649320?comment=6248422
https://edstem.org/us/courses/32705/discussion/2649320?comment=6248492
https://edstem.org/us/courses/32705/discussion/2649320?comment=6248492
https://edstem.org/us/courses/32705/discussion/2649320?comment=6248504
https://edstem.org/us/courses/32705/discussion/2649320?comment=6248504
https://edstem.org/us/courses/32705/discussion/2649320?comment=6248492
https://edstem.org/us/courses/32705/discussion/2649320?comment=6247023
https://edstem.org/us/courses/32705/discussion/2649320?comment=6247023

What does it mean by "not all the pointers in this new block of memory have been allocated"?

Jero Wang AbmIN 2y #883caa

Not sure what the solution itself was referring to here, but | believe intended solution when
we wrote this question was that at this point, node (the old pointer before realloc) has
already been free'd, therefore accessing node->next[j] is aninvalid memory access.

Anonymous Elephant 2y #883beb @ v Resolved

SP22-MT2-Q5, for 5.2, is "output of A -> Adder -> Input of A" also the longest path?

Erik Yang TA 2y #883bef
i think you mean 4.2? then yes, output of A works as well!

Anonymous Whale 2y #883bea =+ Resolved

For SP 22 Midterm, 4.2. Why don't we consider the hold time as well. The hold time represents the
amount of time the input needs to be stable after the positive edge of the clock, so it's still
important. Is it cause the clk-to-q is already greater than the hold time?

Q4.2 (4 points) Assume that the circuit has the following delays:

Register clk-to-q time | 3ns
Register setup time 2ns
Register hold time 1ns

Adder propagation delay | 4ns
Wires are assumed to have no propagation delay. What is the minimum clock period needed
for this circuit to have the same behavior as in Q5.1?

Solution: 9 ns

The longest path between sequential logic blocks (blocks that depend on the clock; in this
case, just the registers) is the path from the output of Register B, through the adder gate,
and into the input of Register A.

How long does it take for a signal to travel through this longest path? From the positive
edge of the clock, we have to wait 3 ns (clk-to-q time) for Register B’s input to appear at
its output. Then, we have to wait 4 ns (adder delay) for the signal to travel through the
adder. Finally, when the signal arrives at the input Register A, we have to wait 2 ns (setup
time) before the next positive edge of the clock. In total, our shortest clock period is 3 + 4
+2=9ns.

Erik Yang TA 2y #883bec

min clock period = critical path = setup time + clk to q + longest combinatorial path

Anonymous Whale 2y #883bed

could you explain how we came up with that equation/why is that the case? | know it
was in the hw guide but | didn't really understand it

https://edstem.org/us/courses/32705/discussion/2649320?comment=6248480
https://edstem.org/us/courses/32705/discussion/2649320?comment=6248480
https://edstem.org/us/courses/32705/discussion/2649320?comment=6246615
https://edstem.org/us/courses/32705/discussion/2649320?comment=6246615
https://edstem.org/us/courses/32705/discussion/2649320?comment=6246817
https://edstem.org/us/courses/32705/discussion/2649320?comment=6246817
https://edstem.org/us/courses/32705/discussion/2649320?comment=6246528
https://edstem.org/us/courses/32705/discussion/2649320?comment=6246528
https://edstem.org/us/courses/32705/discussion/2649320?comment=6246746
https://edstem.org/us/courses/32705/discussion/2649320?comment=6246746
https://edstem.org/us/courses/32705/discussion/2649320?comment=6246755
https://edstem.org/us/courses/32705/discussion/2649320?comment=6246755

QD e

Erik Yang TA 2y #883bee

<+ Replying to Anonymous Whale

yeah so your min clock period has to be >= the longest time it takes for an input to
travel to output bc if it was any shorter, then that path would not be valid. So we want
to ideally find the longest possible path there is. To do that, you need 3 things: clk to q
tells you how long input is translated to output in a register, you need the path with
longest logic delays, and you need the setup time because you need to know how long
it takes for that output to be stable in the "second" register. All together, this
determines how long it is necessary for a clock period to at least be

@ cee

Anonymous Elephant 2y #883bde @ v/ Resolved

SP22-MT2-Q1, for 1.2, does it matter for different bits of systems (i.e., 32-bit vs 64-bit system)?

Nikhil Kandkur 1a 2y #883bdf

The size of each data item (except for chars) does matter when it comes to different bit
system, but the alignment scheme remains the same.

D1

Anonymous Salamander 2y #883bdb @ v Resolved

for SU22 4.2, I'm confused on how -36 translates to OxFDDFFO6F in hex. | got something different
and I'm having trouble understanding how I'm supposed to end up with the correct answer.

Eric Kusnanto 1A 2y #883bdc

Just to clarify, we're translating j loop with -36 as the byte offset. Note that in J-type
instructions, we have an implicit zero that isn't stored in the instruction format.

Anonymous Salamander 2y #883bdd

oh I get it now. | didn't know we were translating the entire instruction and not just the
offset. thank you

D1

Anonymous Pigeon 2y #883bcd = v Resolved

Q1.1 (1.5 points) TRUE or FALSE: If you wanted to store the integer 0XDEADBEEF in a little-endian
system in C, you would have to write int x = OxEFBEADDE;

O True @ FaLse

Solution: False; You'd write int x = OxDEADBEEF ;. One way to see this is that we write
int x = 1; to store the value meaning 1.

SP22-MT-Q1.1

Does the integer OXDEADBEEF stay OXDEADBEEF solely because it's an integer?

Eric Kusnanto Ta 2y #883bda

https://edstem.org/us/courses/32705/discussion/2649320?comment=6246803
https://edstem.org/us/courses/32705/discussion/2649320?comment=6246803
https://edstem.org/us/courses/32705/discussion/2649320?comment=6246755
https://edstem.org/us/courses/32705/discussion/2649320?comment=6244820
https://edstem.org/us/courses/32705/discussion/2649320?comment=6244820
https://edstem.org/us/courses/32705/discussion/2649320?comment=6245214
https://edstem.org/us/courses/32705/discussion/2649320?comment=6245214
https://edstem.org/us/courses/32705/discussion/2649320?comment=6241507
https://edstem.org/us/courses/32705/discussion/2649320?comment=6241507
https://edstem.org/us/courses/32705/discussion/2649320?comment=6241689
https://edstem.org/us/courses/32705/discussion/2649320?comment=6241689
https://edstem.org/us/courses/32705/discussion/2649320?comment=6241703
https://edstem.org/us/courses/32705/discussion/2649320?comment=6241703
https://edstem.org/us/courses/32705/discussion/2649320?comment=6240877
https://edstem.org/us/courses/32705/discussion/2649320?comment=6240877
https://edstem.org/us/courses/32705/discussion/2649320?comment=6241366
https://edstem.org/us/courses/32705/discussion/2649320?comment=6241366

No, endianness is simply how each byte is stored in memory within the 4-byte block. The
example they provide is that when we want to store int x = 0x00000001, we don't write
int x = 0x01000000 .

Y

Anonymous Salmon 2y #883dfe

| thought we would want to write it as 6xDEADBEEF where the D at the startis at the
largest memory address and the F at the end is at the smallest memory address, so if
we want to write it in little endian we would want to write it as 0XFEEBDAED . Where
does my thinking go wrong?

QO

Anonymous Mink 2y #883bcc = v/ Resolved

Can someone explain exactly how the solution for Summer 2022 4.2 was calculated? The part
about the byte offset from j loop?

Here's what | calculate:

add_even_numbers:

addi t0, x0, 0

loop:

beq al x0 end # 1 dinstruction
Tw tl1 0(a@) # 1 dinstruction
andi t2 t1 1 # 1 dnstruction
beq t2 x0 pass # 1 instruction
add t0 tO tl # 1 +dinstruction
pass:

addi a® a0 4 # 1 +dinstruction
addi al al -1 # 1 1dnstruction
j loop # 7 dinstructions away so offset = -28
end:

ret

OR

add_even_numbers:

addi t0, x0, 0

loop:

beq al, x0, end # 1 dinstruction
Tw tl1 0(a@) # 1 dinstruction
srli t2, t1, 1 # 1 instruction
slli t2, t2, 1 # 1 dinstruction
bne tl1, t2, pass # 1 dinstruction
add t0, tO, t2 # 1 dinstruction
pass:

addi al, al, -1 # 1 dinstruction
addi a0, a0, 4 # 1 dinstruction

j loop # 8 dinstructions away so offset = -32
end:

mv a0, to

Y

Yile Hu Tutor 2y #883bce

The solution assumes you use all lines in 4.1

https://edstem.org/us/courses/32705/discussion/2649320?comment=6264876
https://edstem.org/us/courses/32705/discussion/2649320?comment=6264876
https://edstem.org/us/courses/32705/discussion/2649320?comment=6240149
https://edstem.org/us/courses/32705/discussion/2649320?comment=6240149
https://edstem.org/us/courses/32705/discussion/2649320?comment=6241336
https://edstem.org/us/courses/32705/discussion/2649320?comment=6241336

3 loop:

wvi

Iw t1 0(ad) # set tl to be the number in the array

10
11 skip:

12

13
14 j loop

QD e

Anonymous Hare 2y #883bbf =+ Resolved
SU22-MT-Q2.1

For 2.2 and 2.1, can we do modular division by 97 instead of subtracting by it? Also, why are we
casting it to an int?
Q) e

Eric Kusnanto 7a 2y #883bca

Sure. We cast to an int from a char so that we can properly index into the array of Trie nodes.
[IRC, we gave partial credit for not explicitly casting.
Q) e

Anonymous Sparrow 2y #883def

So, if we have a pointer to a character array and we cast it with (int), it will automatically
convert characters into their ASCIl integer number?
\2TH

Anonymous Human 2y #883bbd @ v Resolved
SU22-MT-Q4.2

Do labels get included when calculating offset? Or do we straight up just count the number of
instructions between the jump call and the label its jumping to.
Q) e

Sam Xu TuTorR 2y #883bbe

Labels are skipped

https://edstem.org/us/courses/32705/discussion/2649320?comment=6235610
https://edstem.org/us/courses/32705/discussion/2649320?comment=6235610
https://edstem.org/us/courses/32705/discussion/2649320?comment=6237667
https://edstem.org/us/courses/32705/discussion/2649320?comment=6237667
https://edstem.org/us/courses/32705/discussion/2649320?comment=6263327
https://edstem.org/us/courses/32705/discussion/2649320?comment=6263327
https://edstem.org/us/courses/32705/discussion/2649320?comment=6234485
https://edstem.org/us/courses/32705/discussion/2649320?comment=6234485
https://edstem.org/us/courses/32705/discussion/2649320?comment=6234533
https://edstem.org/us/courses/32705/discussion/2649320?comment=6234533

Melanie McKune 2y #883bad v Resolved

Q2.3 (3 points) Convert —12 to its floating point representation under this floating point system.
Express your answer in binary, including the relevant prefix.

Solution:

12 = 0b1100 = 0b1.1000 x 23
Significand = 0b1000

Exponent =3 — (—3) = 6 =0b110
Sign bit = 1 (negative)
0b11101000 — 0b11101000

For Spring 22 MT 1, why is there an extra 0 on the line 12 = 0b1100 = 0b1.1000 x 2A3? (the zero
added from shifting the decimal over to only have one 1 before decimal point.

Erik Yang 1A 2y #883bae

It's jsut to show that there's 4 significant bits

Melanie McKune 2y #883bac ' v Resolved
For Spring 22 MT 1, question 1.1, why is OXDEADBEEF stored as OXDEADBEEF in little endian?

Sam Xu TuTtorR 2y #883bbc

In little endian, the lower byte will be stored in lower address. Therefore, OXDEADBEEF will be
stored as OXDEADBEEF. In big endian, the lower byte will be in higher address. In big endian,
OxDEADBEEF will be stored as OXEF BE AD DE.

Anonymous Kouprey 2y #883baa =« Resolved
SU22-MT-Q2.5

https://edstem.org/us/courses/32705/discussion/2649320?comment=6232248
https://edstem.org/us/courses/32705/discussion/2649320?comment=6232248
https://edstem.org/us/courses/32705/discussion/2649320?comment=6232487
https://edstem.org/us/courses/32705/discussion/2649320?comment=6232487
https://edstem.org/us/courses/32705/discussion/2649320?comment=6232190
https://edstem.org/us/courses/32705/discussion/2649320?comment=6232190
https://edstem.org/us/courses/32705/discussion/2649320?comment=6234150
https://edstem.org/us/courses/32705/discussion/2649320?comment=6234150
https://edstem.org/us/courses/32705/discussion/2649320?comment=6231929
https://edstem.org/us/courses/32705/discussion/2649320?comment=6231929

Q2.5 (4 points)

ASCIITrieNode* convert(AlphaTrieNode* node) {
if (node == NULL) {
return NULL;
1
ASCIITrieNode* new_node = realloc(node, sizeof(ASCIITrieNode));
for (int i = 0; i < 256; i++) {
new_node->next[i] = NULL;
1
for (int j = 0; j < 26; j++) {
new_node->next[j + 97] = convert(node->next[j]);
}

return new_node;

O (A) Valid @ (B) Invalid

Solution: This implementation is invalid in two different ways, depending on the behavior
of realloc.

Suppose realloc does not change the pointer to node. In other words, new_node holds the
same address as node). This means that the next array of pointers stays in the same place in
memory, but grows in length. In this case, the first for loop sets all the elements in the next
array to NULL. This means that when the second loop tries to read from the same next array,
it doesn’t read the pointers in the original node.

Suppose realloc does change the pointer in the process of reallocation. In other words, the
memory at node is freed, a new, larger block of memory is allocated, and a pointer to this new
memory is placed in new_node. In this case, we encounter the same problem as the malloc
case, where not all the pointers in this new block of memory have been allocated.

For the first scenario where "realloc does not change the pointer to node," the node pointer is not
freed, right, so this could be another potential problem?

Jero Wang abmIN 2y #883bab

The handling of free'ing the old node is dependent on what realloc does, and if realloc
doesn't move the block of memory to a different address, you don't need to free the old
pointer, since it is the same as the new pointer.

Anonymous Cheetah 2y #883afe =+ Resolved

Q2.6 (3 points) Translate the following RISC-V instruction into its corresponding hexadecimal value.
ori t6 s0 -12

Solution: FF446793

opcode = 0b001 0011

funct3 = 0b110

rd=1t6=x31=0b11111

rsl=s0=x8 =0b01000

imm=—-12=0bl1111 1111 0100
0b111111110100 01000 110 11111 0010011
Ob1111 1111 0100 0100 0110 1111 1001 0011
0xFF44 6F93

This is SP22-Midterm-Q2.6

https://edstem.org/us/courses/32705/discussion/2649320?comment=6231991
https://edstem.org/us/courses/32705/discussion/2649320?comment=6231991
https://edstem.org/us/courses/32705/discussion/2649320?comment=6231591
https://edstem.org/us/courses/32705/discussion/2649320?comment=6231591

Is '7"in the solution a typo? Shouldn't it be F?
\2RTE

Jero Wang ApbmIN 2y #883aff
Yeah, should be F, thanks for the catch.
D1

Anonymous Porcupine 2y #883afb = v/ Resolved

Su22-MT-Q4.2: how is the immediate calculated? i thought there are 11 lines before j loop, how
are there 97 i got the offset to be -44.
@ oee

Sam Xu TuTorR 2y #883afd

Lines with label are skipped.

Anonymous Red panda 2y #883aed v Resolved
Su22-MT-Q 5.3

how did they get 1 at the end?

Solution: ~(~(A + D) * ~(C + ~B)) + B
(A+D)+ (C+~B) +B
A+D+C+ (B + ~B)

1

Erik Yang TA 2y #883aee
B +~B =1 and anything + 1 equals 1
D e

Anonymous Whale 2y #883aeb =+ Resolved

For SU 22 4.3, why is option F wrong. Since our function still depends on a, shouldn't we preserve
its value by storing it on the stack. In general, is it bad calling convention to store both s and a
registers on the stack? Is F wrong since it says "at the beginning of the function".

https://edstem.org/us/courses/32705/discussion/2649320?comment=6231800
https://edstem.org/us/courses/32705/discussion/2649320?comment=6231800
https://edstem.org/us/courses/32705/discussion/2649320?comment=6225903
https://edstem.org/us/courses/32705/discussion/2649320?comment=6225903
https://edstem.org/us/courses/32705/discussion/2649320?comment=6225953
https://edstem.org/us/courses/32705/discussion/2649320?comment=6225953
https://edstem.org/us/courses/32705/discussion/2649320?comment=6225472
https://edstem.org/us/courses/32705/discussion/2649320?comment=6225472
https://edstem.org/us/courses/32705/discussion/2649320?comment=6225559
https://edstem.org/us/courses/32705/discussion/2649320?comment=6225559
https://edstem.org/us/courses/32705/discussion/2649320?comment=6224731
https://edstem.org/us/courses/32705/discussion/2649320?comment=6224731

l |
Q4.3 (5 points) Suddenly, your professor starts hating prime numbers, so now they only want you to
sum up the non-prime numbers.

Assume you are given a function is_prime that follows calling convention. What combination of
modifications to the add_even_numbers function is needed in order to sum up all the non-prime
numbers in the array? Select all that apply.

O (A) Use another register to track the number of times is_prime is called
B (B) Replace the code used to check if the number is even with a call to is_prime

B (C) Decrement the stack pointer by some amount at the start of the function, and increment
the stack pointer by the same amount at the end of the function

[0 (D) Save some values in a registers instead of t registers
B (E) Save some values in s registers instead of t registers
[(F) Save used a registers onto the stack at the beginning of the function
B (G) Save used s registers onto the stack at the beginning of the function
[0 (H) Save used t registers onto the stack at the beginning of the function

B (I) Save another register (besides the a, s, or t registers) onto the stack at the beginning of
the function

B (J) Restore at least one register from the stack at the end of the function

O (K) None of the above

Solution: (A): Calling convention doesn’t need you to keep track of how many times a function is
called. The functionality of this program also doesn’t require you to keep track of how many times
the is_prime function is called.

Erik Yang TA 2y #883aec

Yeah you only need to store a regs before you call a function and want to use those a regs
again

Anonymous Whale 2y #883bbb
Is there ever a case where we could store t regs on the stack?

Anonymous Eagle 2y #883aea v/ Resolved

SU22-MT-Q4
Q4.1

Could you explain the code in the two possible solutions that enables us to check if a number is
even or odd? | was struggling to write this part of the code.

Q4.2

| got an offset of -44. When calculating offset, do we only consider the lines with instructions and
ignore the lines with labels?

https://edstem.org/us/courses/32705/discussion/2649320?comment=6225317
https://edstem.org/us/courses/32705/discussion/2649320?comment=6225317
https://edstem.org/us/courses/32705/discussion/2649320?comment=6234111
https://edstem.org/us/courses/32705/discussion/2649320?comment=6234111
https://edstem.org/us/courses/32705/discussion/2649320?comment=6224165
https://edstem.org/us/courses/32705/discussion/2649320?comment=6224165

Thanks!
@ eoe

Sam Xu TuTorR 2y #883afc

4.1.AIf a binary number is odd, its last bit must be 1. Otherwise, all even number has 0 as
last bit. We can check if a number is odd by checking last bit. Solution A check last bit of t1
by using andi t2 t1 1 .Thatisbecause @ AND b (b can be 1 or 0) willbeO, 1 AND b is
b. If t1's last bitis 0, t1 AND 0b0000..001 isequal to 0beeoe..00. iftl's last bitis 1, the
resultis 0beo..o1 .

4.1.B Solution B uses srli t2, t1, 1 and slli t2, t2, 1 .First, itleftshiftt1 by 1, which
basically takes the last bit off from t1. Then we right shift it by 1, which will put a 0 at the left
end of t1. As a result, these two instructions replace the last bit of t1 by 0, regardless its
original last bit. If t1 is even, these instructions will not change its value, because it has a 0 as
last bit. If t1 is odd, these instructions change its value by changing last bit from 1 to 0.

4.2 Yes, we just consider lines with instructions
D1

Anonymous Hummingbird 2y #883cda

For 4.1 solution A, if t1's last bit is 0, then t1 must be even. But t2 =t1 & 1 =0, which will
lead to the branch to pass by beq t2 x0 pass.Shouldn't this be the other way around
and use bne t2 x0 pass instead?

@ .oe

Sam Xu TuTorR 2y #883cfb

“ Replying to Anonymous Hummingbird

If t2=0, it means t1 is even and we should pass it, without put it into the sum
O .

Anonymous Seahorse 2y #883ddd

“ Replying to Sam Xu

But the question asks to return "the sum of all even numbers in the array". So shouldn't
t1 be added to the sum (when t2=0), not passed?

D1

Anonymous Eel 2y #883adf =+ Resolved
SP22-MT-Q4.2

Question 1: for line 10, why we cannot use "jal malloc" as we usually did before?
Question 2: For line 13, why we are using jarl rather than jar?

Question 3: | don't understand how we represent a Struct in RISC-V, specifically in this question,
the Vector. It seems like we are treating Vector as an array, and we use offset to get vector.x and
vector.y, but why can we do that?

https://edstem.org/us/courses/32705/discussion/2649320?comment=6225926
https://edstem.org/us/courses/32705/discussion/2649320?comment=6225926
https://edstem.org/us/courses/32705/discussion/2649320?comment=6252422
https://edstem.org/us/courses/32705/discussion/2649320?comment=6252422
https://edstem.org/us/courses/32705/discussion/2649320?comment=6256293
https://edstem.org/us/courses/32705/discussion/2649320?comment=6256293
https://edstem.org/us/courses/32705/discussion/2649320?comment=6252422
https://edstem.org/us/courses/32705/discussion/2649320?comment=6258698
https://edstem.org/us/courses/32705/discussion/2649320?comment=6258698
https://edstem.org/us/courses/32705/discussion/2649320?comment=6256293
https://edstem.org/us/courses/32705/discussion/2649320?comment=6223753
https://edstem.org/us/courses/32705/discussion/2649320?comment=6223753

Solution:

1| transform:

2 sp sp -16
3 ra, 0(Csp)

4 s0, 4(sp)

5 sl, 8(sp)

6 s2, 12(sp)
7 mv s0, a0l

8 mv sl, al

9 li a0, 8

10 ra malloc
11 mv s2, a0

12 a0, 0(s0)
13 ra, sl1, O
14 a0, 0(s2)
15 a0, 4(s0)
16 ra, s1, 0
17 a0, 4(s2)
18 mv a0, s2

19 ra, 0(sp)
20 s0, 4(sp)
21 sl, 8(sp)
22 s2, 12(sp)
23 sp sp 16
24

Sam Xu TuTor 2y #883aef

1. Jal label is a pseudo instruction and is same as jal ra label in the project. Since this pseudo
instruction is not on reference sheet, it is better to use jal ra label

2. jalr rd rs1 +imm will jump to the instruction at rsi+imm , butjal rd label will just
jump to label. Transformer function takes a function f as an argument. Remember that
arguments are stored in register, so fin this function isin al register. In transformer
function, when we want to use f function, we need to jump to it. Jalr can jump to a register's
value, but jal can only jump to label.

3. In RISCV, yes, we are treating struct like "array". When we initialize a struct in RISC-V, we
basically just have a reference pointing to a memory block that will store the struct. When we
want to read/change the value in a struct, we load/store value at its reference. Each
variables' address in a struct are calculated by using struct's address. For instance, the
second variable of a struct is usually at struct's address + 4, etc.

D1

Anonymous Echidna 2y #883aca @ v Resolved

SU22-MT-Q1.1:

https://edstem.org/us/courses/32705/discussion/2649320?comment=6225825
https://edstem.org/us/courses/32705/discussion/2649320?comment=6225825
https://edstem.org/us/courses/32705/discussion/2649320?comment=6221663
https://edstem.org/us/courses/32705/discussion/2649320?comment=6221663

Is the question basically saying that endian-ness is something taken care of in the "background"
(i.e. it's just how they are stored in memory or seen by the registers), which is why it doesn't really
matter when writing C code?

Jero Wang AbmiN 2y #883adb

Yeah, endianness is about how data is stored in memory, the actual data being stored is the
same so that's why it doesn't matter when you're writing C code.

02

Anonymous Echidna 2y #883abe @ v Resolved
SP22-MT-Q4.1

Shouldn't the function f be dereferenced before being applied here? Because f is a pointer to a
function if | am understanding correctly.

D1

Jero Wang AbmIN 2y #883adc

That step is optional for functions, C dereferences it automatically.

https://stackoverflow.com/a/7519008
D1

Anonymous Eel 2y #883abd v Resolved
SU22-MT-Q4.2

Hi, I don't know how to deal with ""j label". On the reference card, the only J type is "jal", can
anyone explain how to get this answer?

Q4.2 (5 points) Translate the j loop instruction under the skip label to hexadecimal. Assume that
every line in the above code is filled with exactly one instruction (or pseudo-instruction that
expands to one instruction).

Solution: 0xFDDFFO6F

Yile Hu TutorR 2y #883abf

j label is a pseudo instruction for jal x0, label. See #883bc for next steps.
1

Vasti Orbach 2y #883baf

Since the offset is -36. Do we use two's complement or sign magnitude to convert the
decimal to binary.

\2TH

Yile Hu Tutor 2y #883bba
“ Replying to Vasti Orbach

two's complement
@ eee

Anonymous Eel 2y #883abc = v/ Resolved
SU22-Q4.1

https://edstem.org/us/courses/32705/discussion/2649320?comment=6223509
https://edstem.org/us/courses/32705/discussion/2649320?comment=6223509
https://edstem.org/us/courses/32705/discussion/2649320?comment=6221471
https://edstem.org/us/courses/32705/discussion/2649320?comment=6221471
https://edstem.org/us/courses/32705/discussion/2649320?comment=6223525
https://edstem.org/us/courses/32705/discussion/2649320?comment=6223525
https://stackoverflow.com/a/7519008
https://edstem.org/us/courses/32705/discussion/2649320?comment=6221412
https://edstem.org/us/courses/32705/discussion/2649320?comment=6221412
https://edstem.org/us/courses/32705/discussion/2649320?comment=6221652
https://edstem.org/us/courses/32705/discussion/2649320?comment=6221652
https://edstem.org/us/courses/32705/discussion/threads/883bc
https://edstem.org/us/courses/32705/discussion/2649320?comment=6233469
https://edstem.org/us/courses/32705/discussion/2649320?comment=6233469
https://edstem.org/us/courses/32705/discussion/2649320?comment=6233478
https://edstem.org/us/courses/32705/discussion/2649320?comment=6233478
https://edstem.org/us/courses/32705/discussion/2649320?comment=6233469
https://edstem.org/us/courses/32705/discussion/2649320?comment=6221276
https://edstem.org/us/courses/32705/discussion/2649320?comment=6221276

After the addi instruction, | thought if a number is odd (say 5), then addi will output 1. But why the
solution is doing "beq t2 x0 pass'"? This instruction means, if the number is even, we then skip the
number. But | think we want to skip odd numbers. If there any problems in the solution?

Also, as mentioned by another student, the solution didn't mv a0 to t0. Then how we know the a0

contains the final answer?

Q4.1 (15 points) Fill in the blanks in the RISC-V code below. You may not need all the blanks. Each line
should contain exactly one instruction or pseudo-instruction.

add_even_numbers:
addi t0, x0, 0O # set t0 to be the running sum
loop:
beq al x0 end
lw t1 0(a0) # set tl to be the number in the array

andi t2 t1 1
beq t2 x0 pass
add t0 t0 t1
pass:
addi a0 a0 4
addi al al -1
j loop
end:
ret

Erik Yang TA 2y #883acc

#883bf
O e

Anonymous Eel 2y #883add

Thanks! But | am still confused about my question 2. Should we include "mv a0 to" in
our answer?
@ cee

Jero Wang ApbmIN 2y #883ade
“ Replying to Anonymous Eel
| think we're missing a line in our solutions, the "End" label should have mv ae te and

ret.

2 e

Anonymous Antelope 2y #883aae v Resolved

Vector *transform(Vector *self, int (*f)(int)) {
Vector* newVector = malloc(sizeof(Vector)):
newVector -> x = f(self->x);
newVector -> vy f(self->vy);
return newVector;

SP22-MT-Q4.1

A couple of content questions. Why does transform need a "*" next to it? Why is the return value
in the function header Vector and not Vector*? Lastly, the '*' on the input args are put there so we

https://edstem.org/us/courses/32705/discussion/2649320?comment=6222023
https://edstem.org/us/courses/32705/discussion/2649320?comment=6222023
https://edstem.org/us/courses/32705/discussion/threads/883bf
https://edstem.org/us/courses/32705/discussion/2649320?comment=6223606
https://edstem.org/us/courses/32705/discussion/2649320?comment=6223606
https://edstem.org/us/courses/32705/discussion/2649320?comment=6223635
https://edstem.org/us/courses/32705/discussion/2649320?comment=6223635
https://edstem.org/us/courses/32705/discussion/2649320?comment=6223606
https://edstem.org/us/courses/32705/discussion/2649320?comment=6220053
https://edstem.org/us/courses/32705/discussion/2649320?comment=6220053

are able to modify them, correct?

Erik Yang TA 2y #883aaf
i think you're referring to *? You need that because the return value should be a Vector

pointer. newVector is a vector pointer so that's correct. The * on the input args means the
parameters passed in are pointers.

Anonymous Whale 2y #883fe =« Resolved
for SU 22 1:

It says 8 bit two's complement numbers can be represented up to 28 - 1, ins't that 255, not 127?
What is the actual range for two's complement and sign-magnitude numbers then?

Ql Potpourri (20 points)

Q1.1 (6 points) Translate the following decimal numbers into 8-bit two’s complement, unsigned, and
sign-magnitude representations in the table below.
If a translation is not possible, please write "N/A". Write your final answer in hexadecimal
format, including the relevant prefix.

Decimal Two’s Complement Unsigned Sign-Magnitude
128
N/A 0x80 N/A
-12
0xF4 N/A 0x8C
Solution:

8-bit two’s complement numbers can represent numbers up to 28 — 1 = 127, so 128 cannot be
represented.

128 = 27, so in unsigned representation, we have 0b1000 0000 = 0x80.

Intuitively, an 8-bit sign-magnitude number can only use 7 bits to represent the number (leaving
1 bit for the sign). A 7-bit unsigned number can represent numbers up to 28 — 1 = 127, so 128
cannot be represented.

12 in unsigned 8-bit binary is 0b0000 1100. Since we want to represent -12 in two’s comple-
ment binary, we’ll flip the bits: 0b1111 0011, and add one: Ob1111 0100. Converting to hex,
we get 0xF4.

Negative numbers cannot be represented as unsigned.

An 8-bit sign-magnitude number uses 7 bits to represent the magnitude of the number. 12 in
unsigned 7-bit binary is 0b000 1100. Then we add the sign bit, which is 0b1 since we want
to represent a negative number. In total, we get 0b1000 1100, which is 0x8C in hex.

Erik Yang TA 2y #883aba
the range for 2's complement is [-2/(b-1), 2A(b-1) - 1]

range for signed is [-27(b-1) - 1, 27(b-1) - 1]. | believe the 8 is a typo

Anonymous Red panda 2y #883ee @ v Resolved
sp22-MT-Q2.4

https://edstem.org/us/courses/32705/discussion/2649320?comment=6220452
https://edstem.org/us/courses/32705/discussion/2649320?comment=6220452
https://edstem.org/us/courses/32705/discussion/2649320?comment=6216561
https://edstem.org/us/courses/32705/discussion/2649320?comment=6216561
https://edstem.org/us/courses/32705/discussion/2649320?comment=6220509
https://edstem.org/us/courses/32705/discussion/2649320?comment=6220509
https://edstem.org/us/courses/32705/discussion/2649320?comment=6214235
https://edstem.org/us/courses/32705/discussion/2649320?comment=6214235

why don't we make the exponent Ob111 instead of 0b110 since we're trying to maximize the

number?

Anonymous Porcupine 2y #883ef
also, why is the form 0b1.1111 * 2A3? Shouldn't it be 0b0.1111 * 2A3, to make the sign bit 0?

Jero Wang AbmIN 2y #883fc
0b111 is NaN/infinity, so not a number.

1.1111 is referring to the implicit 1 and the mantissa, the sign bit is separate and is
positive (0) in this case.
@ cee

Anonymous Porcupine 2y #883aab

4+ Replying to Jero Wang

i'm still a little confused, where did the extra 1 come from, bc aren't there just 4 1's
from the mantissa? so | don't get why there are 5 1's

@ cee

Erik Yang TA 2y #883aac

““ Replying to Anonymous Porcupine

normal numbers have an implicit 1, so you need to make the number have a leading 1,
followed by the mantissa bits

D1

Anonymous Panther 2y #883ed @ v Resolved

https://edstem.org/us/courses/32705/discussion/2649320?comment=6214262
https://edstem.org/us/courses/32705/discussion/2649320?comment=6214262
https://edstem.org/us/courses/32705/discussion/2649320?comment=6214523
https://edstem.org/us/courses/32705/discussion/2649320?comment=6214523
https://edstem.org/us/courses/32705/discussion/2649320?comment=6217469
https://edstem.org/us/courses/32705/discussion/2649320?comment=6217469
https://edstem.org/us/courses/32705/discussion/2649320?comment=6214523
https://edstem.org/us/courses/32705/discussion/2649320?comment=6217593
https://edstem.org/us/courses/32705/discussion/2649320?comment=6217593
https://edstem.org/us/courses/32705/discussion/2649320?comment=6217469
https://edstem.org/us/courses/32705/discussion/2649320?comment=6214210
https://edstem.org/us/courses/32705/discussion/2649320?comment=6214210

Q2.5 (4 points)

ASCIITrieNode* convert(AlphaTrieNode* node) {
if (node == NULL) {
return NULL;
}
ASCIITrieNode® new_node = realloc(node, sizeof(ASCIITrieNode));
for (int 1 = 0; 1 < 256; i++) {
new_node->next[i] = NULL;
}
for (int j = 0; j < 26; j++) {
new_node->next[j + 97] = convert(node->next[j]);

}

return new_node;

O (A) Valid @ (B) Invalid

Solution: This implementation is invalid in two different ways, depending on the behavior
of realloc.

Suppose realloc does not change the pointer to node. In other words, new_node holds the
same address as node). This means that the next array of pointers stays in the same place in
memory, but grows in length. In this case, the first for loop sets all the elements in the next
array to NULL. This means that when the second loop tries to read from the same next array;,
it doesn’t read the pointers in the original node.

Suppose realloc does change the pointer in the process of reallocation. In other words, the
memory at node is freed, a new, larger block of memory is allocated, and a pointer to this new
memory is placed in new_node. In this case, we encounter the same problem as the malloc
case, where not all the pointers in this new block of memory have been allocated.

Does realloc set garbages to the new space?

When will realloc change the pointer to original node and when will not?
\2TH

Jero Wang AbmiN 2y #883fb

Realloc might have garbage in the newly allocated space, and it may or may not change the
address, and there's no way of predicting this.
@ oee

Anonymous Whale 2y #883fd

why is it unpredicatable?
\2TH

Anonymous Porcupine 2y #883ec = v/ Resolved

SP22-MT-Q1.8: what is the "implicit Oth index bit of 0"? Why is it included/ is it indicated on the
references sheet?

https://edstem.org/us/courses/32705/discussion/2649320?comment=6214520
https://edstem.org/us/courses/32705/discussion/2649320?comment=6214520
https://edstem.org/us/courses/32705/discussion/2649320?comment=6216527
https://edstem.org/us/courses/32705/discussion/2649320?comment=6216527
https://edstem.org/us/courses/32705/discussion/2649320?comment=6214142
https://edstem.org/us/courses/32705/discussion/2649320?comment=6214142

Q1.8 (1.5 points) TRUE or FALSE: Branch instructions can represent a larger immediate value than I-type
instructions.

@ True QO FarLse

Solution: True; Branch instructions encode 12 bits worth of immediate, but we include an

implicit Oth index bit of 0, bringing up the immediate to be 13 bits. I-type instructions encode
only 12 bits, without any implicit bits.

Jero Wang aApmin 2y #883fa

There's an implicit 0 for branch immediates because the offset for branches will always be a
multiple of 2. This is indicated on the reference sheet by the fact that the branch instruction
does not encode the Oth bit of its immediate in the instruction itself.

Anonymous Salmon 2y #883eab

Do we have any other implicit bit values? | see J and B instructions omit the Oth bit but

use the 1st bit, so can we assume both of these types have an implicit 0? Are there any
other types with implicit values?

Anonymous Whale 2y #883df '@« Resolved
For SU 22 2.3

Isn't this also wrong because we just only freed TrieNode struct? Don't we also need to free all the
pointers in the next[] array?

https://edstem.org/us/courses/32705/discussion/2649320?comment=6214515
https://edstem.org/us/courses/32705/discussion/2649320?comment=6214515
https://edstem.org/us/courses/32705/discussion/2649320?comment=6264964
https://edstem.org/us/courses/32705/discussion/2649320?comment=6264964
https://edstem.org/us/courses/32705/discussion/2649320?comment=6209964
https://edstem.org/us/courses/32705/discussion/2649320?comment=6209964

e e — - —————e—--a

} ASCIITrieNode;

We would like to write a function that converts a trie of AlphaTrieNodes to a trie of ASCIITrieNodes.
The function should also free all AlphaTrieNodes in the process. You may assume that all AlphaTrieNodes
are properly initialized.

Below, we have 3 implementations of this conversion function. For each implementation, determine
whether or not it is a valid implementation. If the implementation is not valid, please provide a brief
explanation (10 words or fewer).

Q23 (4 points)

ASCIITrieNode* convert(AlphaTrieNode* node) {
if (node == NULL) {
return NULL;
3
ASCIITrieNode* new_node = malloc(sizeof(ASCIITrieNode));
for (int i = 0; i < 26; i++) {
new_node->next[i + 97] = convert(node->next[i]);
3
new_node->last = node->last;
free(node) ;
return new_node;

O (A) Valid @ (B) Invalid

Solution: This implementation doesn’t work because malloc allocates memory for the
ASCIITrieNode, but does not initialize that memory. In the for loop, we only fill in 26
pointers in the next array of 256 pointers. The rest of the pointers are uninitialized (garbage),
but they should be NULL since there are no nodes for the corresponding characters yet.

Erik Yang TA 2y #883ea
no bc these are all recursive calls, so eventually you will free all the nodes

Anonymous Human 2y #883cf = v Resolved

SU22-MT-Q2.4

https://edstem.org/us/courses/32705/discussion/2649320?comment=6210722
https://edstem.org/us/courses/32705/discussion/2649320?comment=6210722
https://edstem.org/us/courses/32705/discussion/2649320?comment=6208565
https://edstem.org/us/courses/32705/discussion/2649320?comment=6208565

Q2.4 (4 points)

ASCIITrieNode* convert(AlphaTrieNode* node) {
if (node == NULL) {
return NULL;
}
ASCIITrieNode* new_node = calloc(l, sizeof(ASCIITrieNode));
for (int i = 0; i < 26; i++) {
new_node->next[i + 97] = convert(node->next[i]);
}
new_node->last = node->last;
free(node);
return new_node;

@ (A) Valid O (B) Invalid

Solution: This implementation fixes the problem in the previous subpart by using calloc.
Now, the pointers in the next array that aren’t set by the for loop are initialized to NULL by
calloc.

| thought calloc zeroes out the memory. Is this the same as NULL?
Q) e

Erik Yang TA 2y #883da

ptrs to null, intsto 0

Anonymous Gazelle 2y #883acd

If you calloc a struct, does all of the element within the struct get initialized? If so, what
happens to the 'last' element, which is a boolean?
@ eee

Anonymous Human 2y #883ce =+ Resolved

SU22-MT-Q1.6

Would the correct answer be the loader?
Q) e

Erik Yang TA 2y #883db

loader initializes machine registers so yes

Anonymous Human 2y #883cd = v Resolved

SU22-MT-Q4.1

What is the difference between ret , jr ra, mv a@ t0 when exiting a function in risc-v? If we
don'tdo mv a® to in the first solution, how do we have the sum stored in register a0 for the
output?

@ oee

Erik Yang 1A 2y #883dc
retis a psuedo instr for jalr, jr ra jumps to the return address, mv a0 t0 moves t0O to the
return value

https://edstem.org/us/courses/32705/discussion/2649320?comment=6208755
https://edstem.org/us/courses/32705/discussion/2649320?comment=6208755
https://edstem.org/us/courses/32705/discussion/2649320?comment=6222303
https://edstem.org/us/courses/32705/discussion/2649320?comment=6222303
https://edstem.org/us/courses/32705/discussion/2649320?comment=6208450
https://edstem.org/us/courses/32705/discussion/2649320?comment=6208450
https://edstem.org/us/courses/32705/discussion/2649320?comment=6208791
https://edstem.org/us/courses/32705/discussion/2649320?comment=6208791
https://edstem.org/us/courses/32705/discussion/2649320?comment=6208261
https://edstem.org/us/courses/32705/discussion/2649320?comment=6208261
https://edstem.org/us/courses/32705/discussion/2649320?comment=6208836
https://edstem.org/us/courses/32705/discussion/2649320?comment=6208836

Anonymous Human 2y #883dd
how does ret move the correct output into a0?

add_even_numbers:

addi t0, x0, O # set t0 to be the running sum
loop:
beq al x0 end
1w t1 0(Ca0) # set tl to be the number in the array

andi t2 t1 1
beq t2 x0 pass
add t0 tO0 t1
pass:
addi a0 a0 4
addi al al -1
j loop
end:
ret

e

Rosalie Fang ADMIN 2y #883eb

A Replying to Anonymous Human

ret does not move the correct output into a0. In this example, t0 is the sum, so if we
don't have mv a0 t0 at before ret, a0 will not be the running sum when the function
returns.

O .

Anonymous Human 2y #883aad

<+ Replying to Rosalie Fang

ok that's what i was confused about since this is the official solution?
@ eee

Anonymous Human 2y #883cc = v Resolved

SU22-MT-Q5.2

Solution: (A + B) + ((~A * ~B) * ~(C) (direct translation of circuit)
(A+B) + (~(A+B) *~O)
A+ B+ ~C

How do we go from step 2 to step 3?
\2RTE

Eric Kusnanto TA 2y #883de
see #883e

Anonymous Whale 2y #883ca | v Resolved

For SU 22 2.2, where does the inserting take place. We calloc the size of 1 to node->next, but we
never actually put char_to_ascii anywhere.

https://edstem.org/us/courses/32705/discussion/2649320?comment=6208886
https://edstem.org/us/courses/32705/discussion/2649320?comment=6208886
https://edstem.org/us/courses/32705/discussion/2649320?comment=6210761
https://edstem.org/us/courses/32705/discussion/2649320?comment=6210761
https://edstem.org/us/courses/32705/discussion/2649320?comment=6208886
https://edstem.org/us/courses/32705/discussion/2649320?comment=6220022
https://edstem.org/us/courses/32705/discussion/2649320?comment=6220022
https://edstem.org/us/courses/32705/discussion/2649320?comment=6210761
https://edstem.org/us/courses/32705/discussion/2649320?comment=6207874
https://edstem.org/us/courses/32705/discussion/2649320?comment=6207874
https://edstem.org/us/courses/32705/discussion/2649320?comment=6209718
https://edstem.org/us/courses/32705/discussion/2649320?comment=6209718
https://edstem.org/us/courses/32705/discussion/threads/883e
https://edstem.org/us/courses/32705/discussion/2649320?comment=6206770
https://edstem.org/us/courses/32705/discussion/2649320?comment=6206770

Q2.2 (8 points) insert takes in a trie root node (node), and a pointer to a string (word). It should insert
the word into the trie.

1 void insert(AlphaTrieNode* node, char* word) {
for (int 1 = 0; 1 < strlen(word); i++) {
int char_to_ascii = (int) word[i] - 97;
if (node->next[char_to_ascii] == NULL) {
node->next[char_to_ascii] = calloc(l, sizeof(AlphaTrieNode));
}
node = node->next[char_to_ascii];
}
node->last = true;

}

© W 0 N O VoW N

[y

Anonymous Human 2y #883cb

| don't think we need to. If you look in the examples, we represent a character being "stored"
by setting the respective AlphaTrieNode in the next array to the calloced pointer. If there is
no character, the pointer at that index in the next array is null.

Jason Lee 2y #883bc = v Resolved
SU22-MT-Q4.2

I am not sure how to convert "j loop" to hexadecimal. Any pointers on how to get started? Very
confused.

D1

Yile Hu Tutor 2y #883be

Start by taking a look over the reference sheet on what is the underlying instruction of j
loop. When we translate j loop into machine code, loop is translated in to an offset in
byte which will be added to the pc register. How many instructions are between the
instruction j loop and the loop label? How many bytes does this distance equal to?

Anonymous Squid 2y #883bb ' v/ Resolved

For SU22 MT Q4.1, we want to add all the even numbers in an array. The loop in the first solution
looks like this:

loop:
beq al x0 end
lw t1 0(a0) # set tl to be the number in the array
andi t2 t1 1
beq t2 x0 pass
add t0 t0 tl1
pass:
addi a0 a0 4
addi al al -1
j loop

https://edstem.org/us/courses/32705/discussion/2649320?comment=6207862
https://edstem.org/us/courses/32705/discussion/2649320?comment=6207862
https://edstem.org/us/courses/32705/discussion/2649320?comment=6198359
https://edstem.org/us/courses/32705/discussion/2649320?comment=6198359
https://edstem.org/us/courses/32705/discussion/2649320?comment=6200947
https://edstem.org/us/courses/32705/discussion/2649320?comment=6200947
https://edstem.org/us/courses/32705/discussion/2649320?comment=6194706
https://edstem.org/us/courses/32705/discussion/2649320?comment=6194706

I'm a bit confused as to why we have 'beq t2 x0 pass' instead of 'bne t2 x0 pass'. Testing a number
like 1 for t1 (which is odd and we would want to skip over it), 'andi t2 t1 1' should result in t2 being
set to 1 (because '1 and 1' = 1). Then when we check if t2 == 0, we find that it's false, so we don't
jump to pass (this is looking at 'beq t2 x0 pass'). Then we add the current number t1 (which in this
example is 1, an odd number) to the running total (t0).

| think this would be the case for all odd numbers, which makes me think that the provided
solution adds all the odd numbers instead of the even ones. Is there something wrong with my
thought process?

Edit: This is the full solution if this helps:

add_even_numbers:
addi t0, x0, O # set t0 to be the running sum
loop:
beq al x0 end
lw t1 0Cal) # set tl to be the number in the array

andi t2 t1 1
beq t2 x0 pass
add t0 t0 t1
pass:
addi a0 a0 4
addi al al -1
j loop
end:
ret

O

Anonymous Guanaco 2y #883bd

| had the same question! | also where are they setting a0 to be equal to t0 the running sum?

Erik Yang 1A 2y #883bf
You're right it should be bne - good catch!
D1

Anonymous Whale 2y #883af =« Resolved

For SP22 - 2.5, why do we add 1 to -3 to make it -2. In the video guide of hw, they showed how the
smallest denormal number can have an exponent of 000. Conversely, why does the max positive
number have an exponent of 226 instead of 27

[
Q2.5 (3 points) What is the smallest positive number that can be represented by this system?

Express your answer as an odd integer multiplied by a power of 2.

Solution:

Smallest significand = 0b0001

Smallest exponent = 0b000 =0+ (—3) + 1 = —2
0.0001 x 272 =1x276

Midtarm (Mhactinn 2 aantinnae) Paca A AfF1E QA1 — Quawinea 2029

https://edstem.org/us/courses/32705/discussion/2649320?comment=6199581
https://edstem.org/us/courses/32705/discussion/2649320?comment=6199581
https://edstem.org/us/courses/32705/discussion/2649320?comment=6201342
https://edstem.org/us/courses/32705/discussion/2649320?comment=6201342
https://edstem.org/us/courses/32705/discussion/2649320?comment=6190978
https://edstem.org/us/courses/32705/discussion/2649320?comment=6190978

Erik Yang TA 2y #883ba

It's denorm. The exponent would be exp + bias + 1

Anonymous Human 2y #883ab =+ Resolved

SP22-MT-Q4.2

In line 9 of the solution, 1i ae, 8 , how do we know to malloc out 8 bytes for the Vector?

Yile Hu TutorR 2y #883ac

It is the size of a single Vector struct
D e

Anonymous Human 2y #883ad

How do we know that a single Vector is 8 bytes? Is it cause it stores 2 ints?
@ cee

Yile Hu Tutor 2y #883ae
4+ Replying to Anonymous Human

yep
QD eee

Anonymous Echidna 2y #883ace
“ Replying to Yile Hu
Just a quick related follow-up here. Malloc doesn't return anything, right? So is a0 just

garbage after the malloc call?
@ eee

Yile Hu Tutor 2y #883ada

A Replying to Anonymous Echidna

malloc returns the pointer to allocated memory
D1

Anonymous Scorpion 2y #883e =+ Resolved
SU22-MT-Q5
For Q5, part 2, in the solutions, how did we get from (A+B) + (~(A+B)*~C)to A+ B +~C?

Thanks!
@ eoe

Catherine Van Keuren TA 2y #883aa
It looks like they used an identity sometimes called the uniting theorem which says that :

AB + A=A+ B

This theorem can be proven through DeMorgan's as seen by this question off of the logic
discussion in sp22

https://edstem.org/us/courses/32705/discussion/2649320?comment=6191054
https://edstem.org/us/courses/32705/discussion/2649320?comment=6191054
https://edstem.org/us/courses/32705/discussion/2649320?comment=6174033
https://edstem.org/us/courses/32705/discussion/2649320?comment=6174033
https://edstem.org/us/courses/32705/discussion/2649320?comment=6175060
https://edstem.org/us/courses/32705/discussion/2649320?comment=6175060
https://edstem.org/us/courses/32705/discussion/2649320?comment=6175130
https://edstem.org/us/courses/32705/discussion/2649320?comment=6175130
https://edstem.org/us/courses/32705/discussion/2649320?comment=6175145
https://edstem.org/us/courses/32705/discussion/2649320?comment=6175145
https://edstem.org/us/courses/32705/discussion/2649320?comment=6175130
https://edstem.org/us/courses/32705/discussion/2649320?comment=6222568
https://edstem.org/us/courses/32705/discussion/2649320?comment=6222568
https://edstem.org/us/courses/32705/discussion/2649320?comment=6175145
https://edstem.org/us/courses/32705/discussion/2649320?comment=6223319
https://edstem.org/us/courses/32705/discussion/2649320?comment=6223319
https://edstem.org/us/courses/32705/discussion/2649320?comment=6222568
https://edstem.org/us/courses/32705/discussion/2649320?comment=6158554
https://edstem.org/us/courses/32705/discussion/2649320?comment=6158554
https://edstem.org/us/courses/32705/discussion/2649320?comment=6164898
https://edstem.org/us/courses/32705/discussion/2649320?comment=6164898

Use multiple iterations of De Morgan’s laws to prove the identity A + AB = A + B.

AAB
= A(A+B)
= AA+AB
= AB
= A+B

A+ AB

| don't think the identity was explicitly mentioned in lecture, but it might be a useful one to
know/have on your cheat sheet!

Anonymous Scorpion 2y #883d = v/ Resolved
SP22-MT-Q4.1

To call function pointed to by f, don't we need to dereference f? The solution directly used f. When
do we need to dereference function pointers passed in as arguments? Thanks!

2 e

Catherine Van Keuren 1A 2y #883f

You don't need to dereference function pointers. Both ways, (*f)(self->x) and f(self->x),
exhibit the same behavior, and both would be considered correct.

Anonymous Pigeon 2y #883a = v Resolved

SP22-MT-Q2
For Q2.4, how does the 0.1 (binary) after the 15 convert into 0.5 (decimal)?

Q2.4 (3 points) What is the largest non-infinite number that can be represented by this system?
Express your answer in decimal.

Solution:

Largest significand = Ob1111

Largest exponent = 0b110 = 6 + (—3) = 3
0b1.1111 x 23 =0b1111.1 = 15.5

Eric Kusnanto 1A 2y #883b

any bits to the right of the binary point in 0b1111.1 will be negative powers of 2, starting with
27A-1=0.5

https://edstem.org/us/courses/32705/discussion/2649320?comment=6146478
https://edstem.org/us/courses/32705/discussion/2649320?comment=6146478
https://edstem.org/us/courses/32705/discussion/2649320?comment=6164523
https://edstem.org/us/courses/32705/discussion/2649320?comment=6164523
https://edstem.org/us/courses/32705/discussion/2649320?comment=6101087
https://edstem.org/us/courses/32705/discussion/2649320?comment=6101087
https://edstem.org/us/courses/32705/discussion/2649320?comment=6102006
https://edstem.org/us/courses/32705/discussion/2649320?comment=6102006

