You are viewing this thread in readonly mode.

[Midterm] Past Exams - 2021 #467

Eric Che STAFF 1,201
9 months ago in Exam - Midterm VIEWS

You can find the past exams here: https://cs61c.org/sp24/resources/exams/. Please check the

linked past Piazza/Ed Q&A PDFs first before asking here. Many of the questions are already
answered in those! Video walkthroughs are also available!

When posting questions, please reference the semester, exam, and question in this format so
it's easier for students and staff to search for similar questions:

Semester-Exam-Question Number

For example: SP22-Final-Q1, SU22-MT-Q3, FA23-MT-Q1

Anonymous Squirrel 8mth #467ccc v Resolved

SP21-MT-Q7

7. C Programming
(a) Consider the following structure definition. Assume we are using a 32-bit machine.

struct foo {
char a;
char *b;

¥
And the following C code
void bar(struct foo *f){
int 1i;
for(i = 0; i < 5, ++i){
baz(£[i].b);
¥
¥
i. (2.0 pt) What is sizeof (struct foo)?

8

Why is it 8 and not 5? | assumed chars are 1byte and char pointers are 4 bytes so the total would
be 1 +4 =5 bytes in size
\2RTE

Myrah Shah sTaFF 8mth #467cce
#467cd

Anonymous Lapwing 8mth #467ccb v Resolved
Fall 2021, Q3: Union

Can someone explain all these thoroughly, | understand some part of it, not as a whole. And why
16-4 in this case for sizeof(cons)?

https://edstem.org/us/courses/51705/discussion/4462326
https://edstem.org/us/courses/51705/discussion/4462326
https://cs61c.org/sp24/resources/exams/
https://cs61c.org/sp24/resources/exams/#forum-q-a-about-past-exams
https://cs61c.org/sp24/resources/exams/#video-walkthroughs-for-past-exams
https://edstem.org/us/courses/51705/discussion/4462326?comment=10543261
https://edstem.org/us/courses/51705/discussion/4462326?comment=10543261
https://edstem.org/us/courses/51705/discussion/4462326?comment=10543755
https://edstem.org/us/courses/51705/discussion/4462326?comment=10543755
https://edstem.org/us/courses/51705/discussion/4462326?comment=10484280
https://edstem.org/us/courses/51705/discussion/4462326?comment=10541939
https://edstem.org/us/courses/51705/discussion/4462326?comment=10541939

Q3 1CaScheme
Consider the following C code:

union ExtraStuff { typedef struct ConsCell {
—
char a[5]; void *car;
uintl6_t b; void *cdr;
int c; union ExtraStuff extra;
double d; } cons;
};
Consider the following function: cons *map(cons *c, (void *)(*f)(void *));

map takes a pointer to a cons struct ¢ and a function pointer f.

If the cons struct pointer is NULL, map returns NULL. Otherwise, it does the following:
T —

e —_——

1. Allocate a new cons struct. ret is a pointer to this new struct.
Sl T——— T
2. Set the contents of the extra union in ret to be all zeros.

1oC

3. Set the car field in ret to the result of calling f on the car pointer in c.

4. Set cdr field in ret to the result of calling map recursively on the cdr pointer in c.

cons *map(cons *c, (void *) (*f) (void *)) {
cons *ret;

/

if ¢ _C== NULL 5 metum NULL :
ret = malloc(sizeof(cons))i
ret-> extra -d = 0;

ret-> car = f(c->car) ;

ret -> cdr = mapl(c->cdr, f)

return ret;

Fall 2021 Question 3

Q3 1CaScheme
Consider the following C code:

union ExtraStuff { typedef struct ConsCell {
char a[5]; void *car; =% \b—Y4
uint16_t b; = |§ b\’ft,s . void *cdr;
int c; union ExtraStuff extra;
double d; } cons;

¥

Consider the following function: cons *map(cons *c, (void *)(*f)(void *));
map takes a pointer to a cons struct c and a function pointer £.
If the cons struct pointer is NULL, map returns NULL. Otherwise, it does the following;:
1. Allocate a new cons struct. ret is a pointer to this new struct.
2. Set the contents of the extra union in ret to be all zeros.
3. Set the car field in ret to the result of calling f on the car pointer in c.

4. Set cdr field in ret to the result of calling map recursively on the cdr pointer in c.

On a 32-bit architecture, what is sizeof(cons)?
16 - 4 for *car, 4 for *cdr, and 8 for extra (as the biggest field in
extrais adouble, the union extrais of size 8 bytes).

Y

Anonymous Tiger 8mth #467cca + Resolved

Sp21, MT-Q 8.1
What is the minus 2 exponent mantissa bits for?

8. FLOATING POINT

For the following floating point questions, please use * as the power operator in your answer. Do NOT put
parentheses around the exponent. For example, 2"-12.

(a) (3.0 pt) We define floating-point standard A to have 1 sign bit, 10 exponent bits, and 21 mantissa bits
and floating-point standard B to have 1 sign bit, 18 exponent bits, and 45 mantissa bits. All other rules of
IEEE 754 apply to standard A and B. How many more non-zero positive values can standard B represent
compared to standard A? Please format your answer as additions and subtractions of 2’s powers.

263 _ 245 _ 231 o 221

Y

Anonymous Dinosaur 8mth #467cbe v Resolved

FA21-MT-Q4.6

With 9 bits, the largest number that you can represent is 279 - 1 right? and then if we add 1 to that
it should just be 2A9?

https://edstem.org/us/courses/51705/discussion/4462326?comment=10535800
https://edstem.org/us/courses/51705/discussion/4462326?comment=10535800
https://edstem.org/us/courses/51705/discussion/4462326?comment=10534340
https://edstem.org/us/courses/51705/discussion/4462326?comment=10534340

Q4.6 (4 points) What is the smallest positive number representable by the unsigned 16-bit integer that

isn’t representable by this floating point system?

Solution: 29 + 1

Intuitively, floating point numbers can represent all smaller integers 1, 2, 3, etc. but eventually,
there will be an integer that the floating point number skips over (the gaps between numbers
get wider as the number gets larger). Thus we are looking for the smallest positive integer
that is not representable by the floating point number.

If we make the exponent exactly equal to the number of bits in the significand, then we can
use the entire significand to represent a positive integer. The significand has 8 bits, so we can
set the exponent to 71-63=8 and use the 8 bits of the significand and the implicit 1 to represent
all integers up to 2°.

After 29, the exponent must be increased to 72-63=9. This will add a 0 to the end of the bits of
the significand, which means that odd numbers are no longer representable after 2°. Thus the
smallest positive integer that cannot be represented by the floating point number is 2° + 1.

Grading: Half credit was awarded for 28 + 1.

Andy Chen sTarF 8mth #467cbf

You are correct that the largest representable number with 9 bits is 29-1, though this
question is asking something a bit different. We are looking for the smallest positive number
representable by a 16-bit unsigned integer that our floating point system cannot represent.

To give an example of the two systems, the number 64 (2%) can be represented by both
systems.

16-bit unsigned: 0000 0000 0100 0000 --> 20

16-bit Floating Point: 0 1000101 00000000 --> 2(69-63) % 1 00...00, = 2°

A 16-bit unsigned integer can represent every integer from 0 to 216.1.50, we're really
looking for the smallest integer that our floating point system can't represent. In our floating
point system, once the exponent term is 29, the numbers start going up by 2's. We can

represent 2° + 2, 22 + 4, and so on (but not 22 + 1, which is the first of the unrepresentable
integers). Here's an illustrative example where we find the next biggest representable

floating point number starting from 2%:

0 1001000 00000000 --> 2(7263) % 1 00...00, = 2°

0 1001000 00000001 --> 2(72-63) % 1.00...01, = 2 * (20 + 2°8) = 29 + 21

Anonymous Dinosaur 8mth #467cad v Resolved

https://edstem.org/us/courses/51705/discussion/4462326?comment=10534801
https://edstem.org/us/courses/51705/discussion/4462326?comment=10534801
https://edstem.org/us/courses/51705/discussion/4462326?comment=10532296
https://edstem.org/us/courses/51705/discussion/4462326?comment=10532296

Q2 Now, Where Did I Put Those Strings? (10 points)
Consider the following code:

char *foo() {
char *strl = "Hello World";
char str2[] = "Hello World";
char *str3 = malloc(sizeof(char) * X);
strcpy(str3, "Hello World");
// INSERT CODE FROM PARTS 5-7
}

The char *strcpy(char *dest, char *src) copies the string pointed to by src, including the
terminating null byte ("\0"), to the buffer pointed to by dest. The strings may not overlap, and the
destination string dest must be large enough to receive the copy.

Q2.1 (1 point) Where is *str1l located in memory?

QO code @ static (O heap QO stack

Solution: Static
This question is asking about the location of *str1, the address stored in strl.

The code assigns the strl pointer to a hard-coded string "Hello World". C will put this
hard-coded string in static memory.

Grading: 1 point for selecting static.

FA21-MT-Q2
i don't understand when each part of memory is used...

i understand local variables are stored on stack and anything that is dynamically allocated
memory is gonna be stored on the heap. but i'm not too sure when code and static is used?

Myrah Shah sTaFF 8mth #467cae

Can you take a look at the Memory Management section of this discussion and follow up on
which part is confusing you? This section breaks down the different segments and what's
stored in them.

Anonymous Dinosaur 8mth #467cbc

perfect thank you! :)

Anonymous Buffalo 8mth #467cdb

i don't see how *str1 will be a part of static. it is declared inside this function and thus
shouldn't it be a local var and on the stack?

Anonymous Mink 8mth #467bff =+« Resolved
Fa21 Mt1Q3.1

How do we know that we are supposed to set d to 0? How do we know that it isn't ret->extra.c?

https://edstem.org/us/courses/51705/discussion/4462326?comment=10532556
https://edstem.org/us/courses/51705/discussion/4462326?comment=10532556
https://cs61c.org/sp24/pdfs/discussions/disc02.pdf
https://edstem.org/us/courses/51705/discussion/4462326?comment=10533556
https://edstem.org/us/courses/51705/discussion/4462326?comment=10533556
https://edstem.org/us/courses/51705/discussion/4462326?comment=10547332
https://edstem.org/us/courses/51705/discussion/4462326?comment=10547332
https://edstem.org/us/courses/51705/discussion/4462326?comment=10530059
https://edstem.org/us/courses/51705/discussion/4462326?comment=10530059

Q3 I1CaScheme (20 points)
Consider the following C code:

union ExtraStuff { typedef struct ConsCell {
char a[5]; void *car;
uintl6_t b; void *cdr;
int c; union ExtraStuff extra;
double d; } cons;

1

Consider the following function: cons *map(cons *c, (void *)(*f)(void *));
map takes a pointer to a cons struct ¢ and a function pointer £.
If the cons struct pointer is NULL, map returns NULL. Otherwise, it does the following:
1. Allocate a new cons struct. ret is a pointer to this new struct.
2. Set the contents of the extra union in ret to be all zeros.
3. Set the car field in ret to the result of calling f on the car pointer in c.

4. Set cdr field in ret to the result of calling map recursively on the cdr pointer in c.

Q3.1 (18 points) Complete the following code by filling in the blanks. This code should compile without

errors or warnings. Each blank is worth 2 points.

cons *map(cons *c, (void *) (*£f) (void *)) {

cons *ret;
if () return ;
ret = malloc()s;

extra = 0;

car ;

cdr :

return ret;

Nikhil Kandkur sTarF 8mth #467cab

The purpose of the line is to zero out the entire union, and since ExtraStuff is a union, we
can do this by setting d, the largest element of the union, to zero to zero out the union.

Anonymous Mink 8mth #467caf
Is union in scope for the exam?

Nikhil Kandkur starF 8mth #467cba
<+ Replying to Anonymous Mink

Since it is part of the C lectures, yes it is in scope.

https://edstem.org/us/courses/51705/discussion/4462326?comment=10532043
https://edstem.org/us/courses/51705/discussion/4462326?comment=10532043
https://edstem.org/us/courses/51705/discussion/4462326?comment=10532716
https://edstem.org/us/courses/51705/discussion/4462326?comment=10532716
https://edstem.org/us/courses/51705/discussion/4462326?comment=10532822
https://edstem.org/us/courses/51705/discussion/4462326?comment=10532822
https://edstem.org/us/courses/51705/discussion/4462326?comment=10532716

Anonymous Mink 8mth #467bfd = v Resolved
SP21 MT1Q8biib

How do | calculate this?

ii. Conversions: convert the following floating-point representation into their decimal values or vice versa.
If the conversion is impossible, write N/A. Please specify infinities as +inf or -inf, not a number as
NaN, hex numbers as 0xdddddddd where each d is in [0, f]. If your answer is a decimal number, DO

NOT round it.
A. (2.0 pt) —27109.0.625

0xA 6900000

B. (2.0 pt) 0xC07C0000

-7.75

Nikhil Kandkur sTaFF 8mth #467cac

If you are referring to part B, what you can do is write out the mantissa first, and then
depending on your exponent (after subtracting the bias), you move the "floating point" to the

right that many digits. Please refer to discussion 2 for more information on this.

Anonymous Flamingo 8mth #467ccd
If you were referring to part a, | did this.

100 . .
- - 1'% . 0.028 Vsignuit Qexe 2 2 mavwissq
N (X
¥ @°‘:"5 - aret vias : 2SS
Yovinar i oetause
v Rame Ty, V0]
0.10y - 27" .
(o) tre Y
V.00V - 27 27 -2
exe -3
x-255 = -\ol PR eaiee

S\0l2 : vias

SR vias = ~26S
ex@swent’ 0lporvo D —_—
sign “\

Mmoantissa 0ONQO ¢+ v~

4ota\ | Ol100(1OVO Ol . ..,
\ g 3
A e 9 [} 0 0 00
o\ wex = Voyre

L g oiss thexz 29 ¢ 4 pias
Ox ALQO0DOOO 2AHex = 2'° . \y o8

Anonymous Goose 8mth #467bea v Resolved

Spring 2021, Q2 are we suppose to know about interpreters, also what does the first statement

mean?

https://edstem.org/us/courses/51705/discussion/4462326?comment=10529026
https://edstem.org/us/courses/51705/discussion/4462326?comment=10529026
https://edstem.org/us/courses/51705/discussion/4462326?comment=10532146
https://edstem.org/us/courses/51705/discussion/4462326?comment=10532146
https://edstem.org/us/courses/51705/discussion/4462326?comment=10543580
https://edstem.org/us/courses/51705/discussion/4462326?comment=10543580
https://edstem.org/us/courses/51705/discussion/4462326?comment=10524388
https://edstem.org/us/courses/51705/discussion/4462326?comment=10524388

2. (5.0 points) CALL
(a) (2.0 points) General
i. (1.0 pt) Which of the following statements must be true about compilers?
[| Compiled code generally is only able to run on one ISA.
[| Compilers produce larger code than interpreters but do it faster.

[0 The code produced is always more efficient and higher performance than that produced by
interpreters.

[There is only one compiler per language.

[Compilers are always more difficult to write than interpreters.

[0 The easiest step of CALL is compilation; the harder parts are assembling, linking, and loading.
TBD

Lisa Yan starF 8mth #467bee
1) You do not need to know interpreters this semester

2) ISAis an Instruction Set Architecture, such as RISC-V. The ISA generally specifies assembly
instructions and their corresponding machine codes.

Anonymous Ram 9mth #467baf =+ Resolved

SP21-Midterm-Q7: Why is the offset for this question 4? Would it not be 0?

iii. (4.0 pt) Translate the line baz(f[i].b) into RISC-V assembly. Assume that f is in S5 and i is in S6.
You should use only 4 instructions and you can only use a0 as a temporary. You may NOT use
mul, div, or rem!

sll a0 s6 3
add a0 a0 s5
Iw a0 4(a0)
jal baz

Lisa Yan sTAFF 8mth #467bcd

Because of 32-b word alignment, sizeof (*f)=8 (part(i)), and f[i].b (the second field of
f[i])is at the address &f[i] + 4 . The first two instructions compute the value &f[i] in
a0 , and then we add 4 to get the proper address.

Anonymous Goose 9mth #467bad v Resolved

Spring 2021, is a question like this on pipelining in scope for us?

https://edstem.org/us/courses/51705/discussion/4462326?comment=10525722
https://edstem.org/us/courses/51705/discussion/4462326?comment=10525722
https://edstem.org/us/courses/51705/discussion/4462326?comment=10516867
https://edstem.org/us/courses/51705/discussion/4462326?comment=10516867
https://edstem.org/us/courses/51705/discussion/4462326?comment=10520888
https://edstem.org/us/courses/51705/discussion/4462326?comment=10520888
https://edstem.org/us/courses/51705/discussion/4462326?comment=10514958
https://edstem.org/us/courses/51705/discussion/4462326?comment=10514958

(c¢) (1.5 points) Pipelining

Assume we’ve added pipeline registers to create a 6-stage pipeline with our updated datapath, as seen
below (Figure 3). This pipelined datapath acts similarly to our standard RISC-V 5-stage pipeline with the
additional change of the memory section being separated into two sections. Assume no forwarding logic
has been implemented, no branch prediction, and one register operation per cycle.

For the given code, what hazards might exist and due to which lines? Assume all registers have been
initialised and that all labels are defined and that all branches are taken. HINT: having a table open
will be useful for scratch work.

5

DMEM2
DMEM1 W \;

Addr2
DataR1 DataR2

Addrl

DataW1 Dataw2

[R
=
=

1 bne x0, t0, next
2 addi t1, t0, 1
3 1b s0, 0(t1)

4 shw s0, 4(t0)

i. (0.5 pt) Lines 1/2

Jedidiah Tsang sTAFF 9mth #467bbc

nope!

Anonymous Raccoon 9mth #467baa v Resolved

FA23-MT-Q4
I'm particularly confused on this part, how do we know we need an exponent of 15?

Q4.4 (4 points) Out of all numbers representable by this floating point system, what is the largest
number that can also be represented as an unsigned 16-bit integer?

Solution: 216 — 27 = 65408

The unsigned number can represent any nonnegative integer less than 2'6, so we’re looking
for the largest integer less than 216 that can be represented by the floating point number. To
do this, we can try to create a 16-bit integer with the floating point number, and how we can

maximize the number created through this process.

The significand has 8 bits plus the implicit 1 (e.g. 1.1111 1111), so to represent a 16-bit
integer, we would need an exponent of 15 to create 1 1111 1111 0000 000.

Note that the lower 7 bits of any number created in this process will always be 0, because
they are not part of the significand. Thus all we can do to maximize this number is adjust the
significand to be as large as possible. The largest significand would be all 1s, as shown above.

In other words, the value we wantis 0b1.11111111 x2', which is equal to 216 _ 27 — 65408.
Grading: Half credit was awarded for 216 — 1 and 216 — 28,

Anonymous Crane 9mth #467bac

+also curious how we get 227 in this problem?

https://edstem.org/us/courses/51705/discussion/4462326?comment=10517150
https://edstem.org/us/courses/51705/discussion/4462326?comment=10517150
https://edstem.org/us/courses/51705/discussion/4462326?comment=10513161
https://edstem.org/us/courses/51705/discussion/4462326?comment=10513161
https://edstem.org/us/courses/51705/discussion/4462326?comment=10513676
https://edstem.org/us/courses/51705/discussion/4462326?comment=10513676

Anonymous Goose 9mth #467bae

There's 7 bits that are 0 and 16 bits total. So we have 2A16-2A7
@ s

Anonymous Tiger 9mth #467aff =« Resolved
Q4.6-MT-FA21

Im confused why we include the implicit 1. We cannot control whether thatis a 1 or 0 so how can
we use it to make more numbers available to us.

| currently understand that because we have 8 bits of mantissa, and that we can push the decimal
past those 8 bits, we must be able to accurately represent the first 2A8 numbers.
\2TE

Lisa Yan sTAFF 8mth #467bcf

Great insight—it's precisely because we can't control the implicit 1 that it must be part of
every (normalized) floating point representation.

Assuming X=0/1: 1.XXXXXXXX x 2*e is the normalized form, to some exponent e. The
smallest possible representable number with the same exponentis 1.00000000 x 2%e , and
so therefore the next smallest number that we cannot representis 1.000000001 x 2%e.To
find the unsigned integer that matches this form, e=9 and therefore the numberis 279 +
1.

As a sanity check, we could consider denormalized form, which doesn't have the implicit 1,
but this option is not viable because any denormalized number in this provided floating rep
is a non-integer.

Q) e

Anonymous Raccoon 9mth #467afe = v Resolved

FA21-MT-Q2.9

Why is this "\0'dIr correct in little endian? wouldn't r be the most significant bit and therefore
stored at the highest memory address meaning r is first?

https://edstem.org/us/courses/51705/discussion/4462326?comment=10514987
https://edstem.org/us/courses/51705/discussion/4462326?comment=10514987
https://edstem.org/us/courses/51705/discussion/4462326?comment=10512588
https://edstem.org/us/courses/51705/discussion/4462326?comment=10512588
https://edstem.org/us/courses/51705/discussion/4462326?comment=10521104
https://edstem.org/us/courses/51705/discussion/4462326?comment=10521104
https://edstem.org/us/courses/51705/discussion/4462326?comment=10511567
https://edstem.org/us/courses/51705/discussion/4462326?comment=10511567

First, note that strl contains the address of the bytes Hello World. These bytes are stored
contiguously in memory; H is at the lowest address, and d is at the highest address. A null byte
is stored immediately after d in memory.

Casting strl to (uint32_t*) doesn’t change the fact that str1 is still a pointer to the bytes
Hello World, but those bytes are now being read as an array of uint32_t (32-bit = 4-byte
unsigned integers), instead of an array of chars.

The [2] syntax says to dereference the pointer and look for the second element (zero-indexed)
in the array. Each element in the array is 4 bytes long because of the cast. Thus the 0th element
is bytes 0-4 (Hell), the 1st element is bytes 5-8 (0 Wo), and the 2nd element is bytes 9-12 (r1d
and the null byte).

Finally, we need to interpret these four bytes (rld and the null byte) as a uint32_t. We can
use the ASCII table to look up the bytes being stored in memory to represent these characters.
From lowest to highest memory address, the bytes are 0x72 (r), 0x6C (1), 0x64 (d), and 0x00
(null byte).

Because the system is little-endian, the most-significant byte is stored at the highest memory
address. In other words, we should read the integer starting from the highest address and
ending at the lowest address. This gives us 0x00646C72.

Lisa Yan sTAFF 8mth #467bda

Character arrays are stored in-order, from lowest address to highest address. Endianness
impacts how words are loaded from/stored to memory, byte-by-byte.

In this case, the character array Hello World\® was stored in byte-order, because it was
considered a string (and therefore effectively written byte-by-byte). However, because of the
cast, loading in ((uint32_t %) str1)[2] readsin a full 4B word, assuming little endian, and
hence \o is considered the most-significant byte.

FA21-nT-02.9 72l o
\
e
+0 t ® 2

Anonymous Raccoon 9mth #467afd + Resolved

SP21-MT-Q3 Is a valid path (ie. something we track when finding minimum path vs maximum
path) always from one register to another (including itself) or from one input to a register?

Lisa Yan sTarF 8mth #467bdc

Good question—I took the liberty of updating your question label, but let me know if |
misunderstood. A path is defined as how you track a signal between two clocked circuit
elements (possibly the same one). More precisely you can define it as the time it takes,
starting from a rising clock edge, for a signal to be stable at the input of a clocked element.

My strategy: If the two clocked elements are registers:

e start with clk-to-q (the time it takes for register output to be stable)

e add all combinational logic block delays until we hit a register (i.e., the second clock
element)

e end with setup time (the time required for register input to be stable)

https://edstem.org/us/courses/51705/discussion/4462326?comment=10521317
https://edstem.org/us/courses/51705/discussion/4462326?comment=10521317
https://edstem.org/us/courses/51705/discussion/4462326?comment=10510989
https://edstem.org/us/courses/51705/discussion/4462326?comment=10510989
https://edstem.org/us/courses/51705/discussion/4462326?comment=10521538
https://edstem.org/us/courses/51705/discussion/4462326?comment=10521538

Here's the diagram of SP21-MT-Q3.a.

In the following circuit, the registers have a clk-to-q delay of 6ns and setup times of 5ns. NOT gates have a delay
of 3ns, AND and OR gates have a delay of 7ns, and the “Black Box” logic component has a delay of 9ns.
gp21-NT-@%. i _
ccvp c\\l'“ Black (" Logic
t—f {3
At

.A H'—‘Ho

Qe

Anonymous Raccoon 9mth #467aed v/ Resolved

FA23-MT-Q3 Why do we not need to dereference f when we call it since f is a pointer to a
function? Or is it dereferenced when its passed in? For instance here we would want to call f (so
f(c->car) but when we pass it into map don't we want the pointer to ?)

cons *map(cons *c, (void *) (*f) (void *)) {
cons *ret;

if ¢ _Cc==NULL) return _ NULL :
ret = malloc(sizeof(cons))i
ret -> extra_-d = 0;
ret-> car = flc->car) ;
ret -> cdr = Map(c->cdr, f) ;

return ret;

Lisa Yan sTarF 8mth #467bdd

Good question; this is a C quirk, meaning that =f and &f are both syntactic sugar for f .
The only time we need x is in the declaration of a function pointer type, as shown in the
parameter definition (void *) (xf) (void). In all other places where the variable f is
assigned, called, or used, we can drop * (and we should, for stylistic clarity). More here:
#179aa

@ .

Anonymous Goose 9mth #467aeb v Resolved

FA21. Q2.1
| don't understand why str1 is located in static memory - wouldn't it just be on the stack since it's
a local variable inside foo? How can we tell what is located in static memory vs what is not? Also |

https://edstem.org/us/courses/51705/discussion/4462326?comment=10507418
https://edstem.org/us/courses/51705/discussion/4462326?comment=10507418
https://edstem.org/us/courses/51705/discussion/4462326?comment=10521642
https://edstem.org/us/courses/51705/discussion/4462326?comment=10521642
https://edstem.org/us/courses/51705/discussion/threads/179aa
https://edstem.org/us/courses/51705/discussion/4462326?comment=10506707
https://edstem.org/us/courses/51705/discussion/4462326?comment=10506707

thought *str1 is dereferencing the pointer str1 but it seems like this question is referring to the
address stored in str1. what exactly does that mean?

Q2 Now, Where Did I Put Those Strings? (10 points)
Consider the following code:

char *foo() {
char *strl = "Hello World";
char str2[] = "Hello World";
char *str3 = malloc(sizeof(char) * X);
strcpy(str3, "Hello World");
// INSERT CODE FROM PARTS 5-7
1

The char *strcpy(char *dest, char *src) copies the string pointed to by src, including the
terminating null byte ("\0"), to the buffer pointed to by dest. The strings may not overlap, and the
destination string dest must be large enough to receive the copy.

Q2.1 (1 point) Where is *str1 located in memory?

QO code @ static (O heap O stack

Solution: Static
This question is asking about the location of *str1, the address stored in strl.

The code assigns the strl pointer to a hard-coded string "Hello World". C will put this
hard-coded string in static memory.

Grading;: 1 point for selecting static.

Vinay Agrawal sTafFF 9mth #467aef

When a string is directly assigned to a pointer, it is stored as a read-only block in static
memory (typically chr* str = "Something";). The address of this string however, which is the
value of str1, is stored on the stack. This is specifically a behavior of strings in C. If a string is
directly assigned to an array, then the array is stored on the stack and you are free to modify
itas str2[1]="a";

2

Anonymous Tiger 9mth #467afa

how would the answer change if we were dealing with ints instead of chars?

Vinay Agrawal sTAFF 9mth #467afb

<+ Replying to Anonymous Tiger

If we tried doing int* ptr_num = 5, then this would cast 5 into a pointer, which is not
very useful and potentially dangerous because we don't really know what part of
memory that is. ptr_num would be stored on the stack but *ptr_num is uncertain. For
defined behavior, we should malloc(sizeof{int)) when creating an integer pointer. If we
tried using int num_arr[] ={1, 2, 3, 4, 5} then this would be stored on the stack.

Anonymous Tiger 9mth #467afc

4+ Replying to Vinay Agrawal

So is it just a special case for chars that allows us to store the string into static memory?
Or could we create a scenario where we store an int into static memory from within a

https://edstem.org/us/courses/51705/discussion/4462326?comment=10508215
https://edstem.org/us/courses/51705/discussion/4462326?comment=10508215
https://edstem.org/us/courses/51705/discussion/4462326?comment=10508240
https://edstem.org/us/courses/51705/discussion/4462326?comment=10508240
https://edstem.org/us/courses/51705/discussion/4462326?comment=10508423
https://edstem.org/us/courses/51705/discussion/4462326?comment=10508423
https://edstem.org/us/courses/51705/discussion/4462326?comment=10508240
https://edstem.org/us/courses/51705/discussion/4462326?comment=10508727
https://edstem.org/us/courses/51705/discussion/4462326?comment=10508727
https://edstem.org/us/courses/51705/discussion/4462326?comment=10508423

function? Right now, it seems the only possible way to store an int into static memory
would be to define it in the global frame.
@ cee

Vinay Agrawal sTAFF 9mth #467bba
““ Replying to Anonymous Tiger
Yes strings are special, but this can also be done for integers with a little more effort. ¥o

thrective, Stuehas #defineNUM_LOORS 3, or use the const qualifier when defining a
read-only integer within a function, such as const uint32_t NUM_LOOPS = 3. EDIT:
Using the #define preprocessor directive does not store values in static memory.
Preprocessor directives are used by compilers to replace the text of the program with
the specific value.

O -

Anonymous Tiger 9mth #467bbd

“ Replying to Vinay Agrawal

I am currently looking at HW 2.5, q1.6 and the solution seems to disagree with
#define being put into static memory. Is there a difference between the hw question
and what you are suggesting?

@ eee

Vinay Agrawal sTaFF 9mth #467bbe

<4 Replying to Anonymous Tiger

Good catch! The HW is right. When using #define, all it does is string replacement by
changing the text of the program with the preprocessor directive value. | will make an
update on my previous reply.

O .

& Dan Nguyen 9mth #467acb v/ Resolved
FA21-MT-Q5

What is stdin, how do we use/interpret it, and do we have to know what it is in the exam?

Justin Yokota STAFF 9mth #467acc

stdin is a special FILE* that connects to the terminal for input. Much as how stdout gets used
whenever you print stuff, stdin gets used whenever you request user input. It's the
equivalent of Python's input() function.

\2RTE

Anonymous Dolphin 9mth #467abf = v Resolved
FA21-mt-gq4.5

https://edstem.org/us/courses/51705/discussion/4462326?comment=10516973
https://edstem.org/us/courses/51705/discussion/4462326?comment=10516973
https://edstem.org/us/courses/51705/discussion/4462326?comment=10508727
https://edstem.org/us/courses/51705/discussion/4462326?comment=10517445
https://edstem.org/us/courses/51705/discussion/4462326?comment=10517445
https://edstem.org/us/courses/51705/discussion/4462326?comment=10516973
https://edstem.org/us/courses/51705/discussion/4462326?comment=10517507
https://edstem.org/us/courses/51705/discussion/4462326?comment=10517507
https://edstem.org/us/courses/51705/discussion/4462326?comment=10517445
https://edstem.org/us/courses/51705/discussion/4462326?comment=10502961
https://edstem.org/us/courses/51705/discussion/4462326?comment=10502961
https://edstem.org/us/courses/51705/discussion/4462326?comment=10503033
https://edstem.org/us/courses/51705/discussion/4462326?comment=10503033
https://edstem.org/us/courses/51705/discussion/4462326?comment=10498975
https://edstem.org/us/courses/51705/discussion/4462326?comment=10498975

Q4.5 (4 points) What is the smallest positive number representable by this floating point system that
isn’t representable by the unsigned 16-bit integer?

Solution: 2~

Floating point numbers can represent fractional numbers between 0 and 1, but integers cannot
represent fractional numbers between 0 and 1. Thus we are looking for the smallest positive
number representable by the floating point number.

The smallest positive numbers representable in floating point are the denorms. The smallest
denorm can be obtained by using a denorm exponent of 0 and the smallest possible mantissa.
This gives us 2770

How did they get -70 from 7 bit exponent &

Justin Yokota STAFF 9mth #467acd
This is a combination of the exponent AND number of mantissa bits. We effectively find the
smallest positive representable number.

Anonymous Raccoon 9mth #467bab
Why would this be -70 and not -71?

Anonymous Dolphin 9mth #467bbf
Yea shouldn't it be 2763 x 278 = 27717

Justin Yokota STAFF 9mth #467bca
4+ Replying to Anonymous Dolphin
Note that denorms use an exponent one higher than normal!

Anonymous Dolphin 9mth #467bcb

““ Replying to Justin Yokota

facs. Justin why aren't you sleeping
1

Anonymous Swan 9mth #467abe = v/ Resolved

Q4.6 (4 points) What is the smallest positive number representable by the unsigned 16-bit integer that
isn’t representable by this floating point system?

Solution: 29 +1

Intuitively, floating point numbers can represent all smaller integers 1, 2, 3, etc. but eventually,
there will be an integer that the floating point number skips over (the gaps between numbers
get wider as the number gets larger). Thus we are looking for the smallest positive integer
that is not representable by the floating point number.

FA21-MT-Q4.6

since a significand of 9 bits is not representable, then 1.000000001 is not representable. if this
significand multiplied by any power of 2 is still not representable then if we want the smallest
shouldn't we choose an exponent of 07 i'm a little confused why we choose exponent of 9 to get
1000000001 as the smallest not representable if 1.000000001 * 270 is also not representable?

https://edstem.org/us/courses/51705/discussion/4462326?comment=10503046
https://edstem.org/us/courses/51705/discussion/4462326?comment=10503046
https://edstem.org/us/courses/51705/discussion/4462326?comment=10513236
https://edstem.org/us/courses/51705/discussion/4462326?comment=10513236
https://edstem.org/us/courses/51705/discussion/4462326?comment=10518391
https://edstem.org/us/courses/51705/discussion/4462326?comment=10518391
https://edstem.org/us/courses/51705/discussion/4462326?comment=10518408
https://edstem.org/us/courses/51705/discussion/4462326?comment=10518408
https://edstem.org/us/courses/51705/discussion/4462326?comment=10518391
https://edstem.org/us/courses/51705/discussion/4462326?comment=10518413
https://edstem.org/us/courses/51705/discussion/4462326?comment=10518413
https://edstem.org/us/courses/51705/discussion/4462326?comment=10518408
https://edstem.org/us/courses/51705/discussion/4462326?comment=10498965
https://edstem.org/us/courses/51705/discussion/4462326?comment=10498965

Justin Yokota sTAFF 9mth #467ace

If we picked an exponent of 0, we'd get a number that's not an integer. This would therefore
not be representable by the uint16.
\2TE

Anonymous Dolphin 9mth #467abd = v Resolved
FA21-MT-g3

cons *map(cons *c, (void *) (*f) (void *)) {
cons *ret;
if (¢ == NULL) return NULL;
ret = malloc(sizeof(cons));
ret->extra.d = 0;
ret->car = f(c->car);
ret->cdr = map(c->cdr, £);
return ret;

}

map takes in a cons* and f. But c->cdr is a void*. How does map take this in?

Justin Yokota sTAFF 9mth #467acf

void*s get implicitly typecast to any other pointer type.
D e

Anonymous Dolphin 9mth #467abc v Resolved
FA21-MT-Q3

Blank 5 sets the contents of the extra union to be all zeros. This was probably the hardest blank
in this question! The key observation is that the largest element in the union is double d, which
is 8 bytes = 64 bits. (char a[5] is 5 bytes = 40 bits, uint16_t b is 2 bytes = 16 bits, and int cis
4 bytes = 32 bits.) Thus, if we set the largest element in the union to 0, all the other union elements
using that same memory will also be set to 0.

Accepted solutions:
o d
| thought structs allocates enough memory for all variables in the struct?!?!? Why would double d

overwrite the other variables?
@ eoe

Justin Yokota STAFF 9mth #467ada
structs do. This question uses a union, not a struct.
1

https://edstem.org/us/courses/51705/discussion/4462326?comment=10503061
https://edstem.org/us/courses/51705/discussion/4462326?comment=10503061
https://edstem.org/us/courses/51705/discussion/4462326?comment=10498672
https://edstem.org/us/courses/51705/discussion/4462326?comment=10498672
https://edstem.org/us/courses/51705/discussion/4462326?comment=10503069
https://edstem.org/us/courses/51705/discussion/4462326?comment=10503069
https://edstem.org/us/courses/51705/discussion/4462326?comment=10498642
https://edstem.org/us/courses/51705/discussion/4462326?comment=10498642
https://edstem.org/us/courses/51705/discussion/4462326?comment=10503077
https://edstem.org/us/courses/51705/discussion/4462326?comment=10503077

Anonymous Mink 8mth #467bfe

Are unions in scope?
@ cee

Anonymous Dolphin 9mth #467abb + Resolved
FA21-MT-Q2
2.5 (1 point) Returning the string.
M return stri; M return stri;

Oreturn str2; [0 MNone of the above

Solution: return stri;

strl is a pointer to static memory, which doesn't change throughout program execution, so
return strl; is safe.

s5tr2 is a pointer to the stack. When the function returns, the string on the stack is erased,
which causes return str2: to have undefined behavior.

5tr3 is a pointer to the heap. Heap memory stays allocated until the programmer calls free,
Since this functon never calls free, the string on the heap will stay allocated, so return
5tri3; is safe.

Grading: Each answer choice was graded independently. 1/3 of a point for correctly selecting
strl, 1/3 of a point for correctly not selecting str2, and 1/3 of a point for correctly selecting
str3. Selecting "None of the above® is worth 1/3 points (for correctly not selecting str2).

Conceptually, when we return str2, will only the first item in the array stay saved? Since when we
return str1 for example we return the pointer safely, so from the same logic returing str2 will
return only the first item safely right? the rest will get erased?

\2TH

Justin Yokota STAFF 9mth #467adb

No; none of the items stay saved, since all the data is on the stack in a segment that will get
overwritten.

O e

Anonymous Dolphin 9mth #467aba v Resolved

FA21-MT-Q2. Can someone explain the answers below? Why are they treated differently? Where
can | find more information about this?

https://edstem.org/us/courses/51705/discussion/4462326?comment=10529946
https://edstem.org/us/courses/51705/discussion/4462326?comment=10529946
https://edstem.org/us/courses/51705/discussion/4462326?comment=10498501
https://edstem.org/us/courses/51705/discussion/4462326?comment=10498501
https://edstem.org/us/courses/51705/discussion/4462326?comment=10503089
https://edstem.org/us/courses/51705/discussion/4462326?comment=10503089
https://edstem.org/us/courses/51705/discussion/4462326?comment=10498406
https://edstem.org/us/courses/51705/discussion/4462326?comment=10498406

2.1 (1 point) Where is *str1 located in memory?

(O code @ static (O heap (O stack

Solution: Static
This question is asking about the location of *strl, the address stored in stri.

The code assigns the strl pointer to a hard-coded string "Hello World". C will put this
hard-coded string in static memory.

Grading: 1 point for selecting static.

2.2 (1 point) Where is *str2 located in memory?

(O code () static (O heap @ stack

Solution: Stack
This question is asking about the location of *str2, the address stored in str2.

str2 is a character array, and it is declared inside the foo function, so it is a local variable.
Local variables are stored in stack memory.

Grading: 1 point for selecting stack.

Justin Yokota sTAFF 9mth #467adc
This is mostly a quirk of how C treats its variables; char*s are pointers which could point
anywhere (and there's a preference for putting things in the data segment when possible),

and char[]s are arrays, which get treated as a sequence of local variables (and therefore gets
placed on the stack).

Anonymous Tiger 9mth #467aee
Would the same hold if we were dealing with other types? For instance,

void foo() {
int x = 5;
int xp = &x;

Would x and xp bein staticand p be in the stack?

My thinking is that x represents an int which could be placed into the data segment.
Therefore, dereferencing p is equivalent to finding what x is. And because p is a
pointer declared inside of a function, it is placed in the stack.

\2TH

Anonymous Raccoon 9mth #467aaf = v Resolved

FA23-MT-Q3 why are we allowed to ignore the space (bytes) the other parts of the extra struct use
and just use the largest part of the struct to represent the total memory?
\2RTE

Justin Yokota sTaFF 9mth #467add
That's not a struct, but a union. Unions have different behavior from structs.

https://edstem.org/us/courses/51705/discussion/4462326?comment=10503111
https://edstem.org/us/courses/51705/discussion/4462326?comment=10503111
https://edstem.org/us/courses/51705/discussion/4462326?comment=10508202
https://edstem.org/us/courses/51705/discussion/4462326?comment=10508202
https://edstem.org/us/courses/51705/discussion/4462326?comment=10498064
https://edstem.org/us/courses/51705/discussion/4462326?comment=10498064
https://edstem.org/us/courses/51705/discussion/4462326?comment=10503139
https://edstem.org/us/courses/51705/discussion/4462326?comment=10503139

O .

Anonymous Raccoon 9mth #467aae = v Resolved

FA23-MT-Q3 Why do we not have to cast the void pointers to cons pointers when we call f or map?

Justin Yokota STAFF 9mth #467ade

Void pointers implicitly get typecast to other pointer types.
Q) e

Anonymous Raccoon 9mth #467aec

So it is always unnecessary to explicitly cast a void pointer?
@ cee

Lisa Yan staFF 8mth #467bdb
4 Replying to Anonymous Raccoon

This is a stylistic decision. We wouldn't take off credit if you chose to explicitly cast. See
this discussion: #114db
@ .o

Anonymous Weasel 9mth #467aad =+ Resolved
Spring21 Q5 datapath pipelining is not in scope correct?

Eddy Byun sTArF 9mth #467aca

Pipelining is not in scope. For this particular problem, it looks like parts a and b are in scope
because they cover the single cycle datapath

02

Anonymous Weasel 9mth #467aac =~ v Resolved

Spring 21, 3(a)

can someone reminds me how to calculate the maximum allowable hold time of the registers,
you can use this problem as an example and reference

https://edstem.org/us/courses/51705/discussion/4462326?comment=10498048
https://edstem.org/us/courses/51705/discussion/4462326?comment=10498048
https://edstem.org/us/courses/51705/discussion/4462326?comment=10503145
https://edstem.org/us/courses/51705/discussion/4462326?comment=10503145
https://edstem.org/us/courses/51705/discussion/4462326?comment=10507403
https://edstem.org/us/courses/51705/discussion/4462326?comment=10507403
https://edstem.org/us/courses/51705/discussion/4462326?comment=10521352
https://edstem.org/us/courses/51705/discussion/4462326?comment=10521352
https://edstem.org/us/courses/51705/discussion/4462326?comment=10507403
https://edstem.org/us/courses/51705/discussion/threads/114db
https://edstem.org/us/courses/51705/discussion/4462326?comment=10498033
https://edstem.org/us/courses/51705/discussion/4462326?comment=10498033
https://edstem.org/us/courses/51705/discussion/4462326?comment=10502211
https://edstem.org/us/courses/51705/discussion/4462326?comment=10502211
https://edstem.org/us/courses/51705/discussion/4462326?comment=10498027
https://edstem.org/us/courses/51705/discussion/4462326?comment=10498027

3. SDS
For the following question, do NOT include units in your answer!

In the following circuit, the registers have a clk-to-q delay of 6ns and setup times of 5ns. NOT gates have a delay
of 3ns, AND and OR gates have a delay of Tns, and the “Black Box” logic component has a delay of 9ns.

Black Box Logic

-
L
7ih A
1
> [
C
D5Q
|—>| >
[}
Circuit

(a) (2.5 pt) What is the maximum allowable hold time of the registers?

28

The shortest path through the circuit to a register clearly follows the path from A to O and includes:
clk-to-q delay, two NOT gates, one OR gate, and the “Black Box.” Maximum hold time — 6 + 2%3 + 7 + 9
= 28ns

Justin Yokota sTAFF 9mth #467adf

The maximum hold time is the same as the first time a register input changes in response to
the clock tick. In this case, this first happens at time 28 ns, at the input to A.
I\

Anonymous Turtle 9mth #467bcc

Why do we include the "Black Box" delay in it?
&

Anonymous Flamingo 8mth #467cbhd
<+ Replying to Anonymous Turtle

Because in order for the cycle to be complete (output of one register to input of

another or Q side to D side), the blackbox has to be passed through. In other words, it's
part of the logic
O

Anonymous Koala 9mth #467aab v Resolved

[Fa21 Q3] I looked at the solutions of extra.d is 0 but I still do not get why that is the case.

Justin Yokota sTAFF 9mth #467aea

extra.d is the double, which overlaps with all other elements of the union. Setting the double
to 0 also sets all components of the union to 0.
1\

Anonymous Dunlin 9mth #467aaa v Resolved

https://edstem.org/us/courses/51705/discussion/4462326?comment=10503234
https://edstem.org/us/courses/51705/discussion/4462326?comment=10503234
https://edstem.org/us/courses/51705/discussion/4462326?comment=10518550
https://edstem.org/us/courses/51705/discussion/4462326?comment=10518550
https://edstem.org/us/courses/51705/discussion/4462326?comment=10533918
https://edstem.org/us/courses/51705/discussion/4462326?comment=10533918
https://edstem.org/us/courses/51705/discussion/4462326?comment=10518550
https://edstem.org/us/courses/51705/discussion/4462326?comment=10496901
https://edstem.org/us/courses/51705/discussion/4462326?comment=10496901
https://edstem.org/us/courses/51705/discussion/4462326?comment=10503260
https://edstem.org/us/courses/51705/discussion/4462326?comment=10503260
https://edstem.org/us/courses/51705/discussion/4462326?comment=10496738
https://edstem.org/us/courses/51705/discussion/4462326?comment=10496738

8. FLOATING POINT

For the following floating point questions, please use " as the power operator in your answer. Do NOT put
parentheses around the exponent. For example, 2°-12.

(a) (3.0 pt) We define floating-point standard A to have 1 sign bit, 10 exponent bits, and 21 mantissa bits
and floating-point standard B to have 1 sign bit, 18 exponent bits, and 45 mantissa bits. All other rules of
IEEE 754 apply to standard A and B. How many more non-zero positive values can standard B represent
compared to standard A? Please format your answer as additions and subtractions of 2’s powers.

963 _ 945 _ 931 4 921

SP21-MT-Q8(a)

How to get this answer?
)

Lisa Yan sTaFF 8mth #467bde

Define X, Y as 0/1 bit values, but strings X...X and Y...Y not all-Os. Also definey_32,y_64 as
remainders from the total.

32b s = 0 values 64b non-zero positive value?
1 0 0...0 O..uvnnnn 0 1 F (+0)

2221 -1 0 0...0 X........ X 2745 -1 T (+denorm)

1 0 1...1 O....uc.. 0 1 T (+inf)

2721 -1 0 1...1 X.....o... X 2745 -1 F (NaN)

y_32 OVY...Y Xeveuvuonn. X y_64 T (+norm)

2731 2763

Therefore the difference in rows 2, 3, and 5 is:

(263 —1— (245 o 1)) o (231 —1— (221 o 1)) — 263 o 245 o 231 + 221

Anonymous Dunlin 8mth #467bdf
omg thank you so much Lisa this is so clear&
1

Anonymous Kouprey 8mth #467ccf
if we only count positive numbers for 32 bit number,

why is it 2432 - 1 - (2A21 - 1) # total number can represent - positive zero - total number
of positive NaN

but not 2A31 -1 -(2/21 - 1) # total positive number can represent - positive zero - total
number of positive NaN
O

Lisa Yan staFF 8mth #467cda

<+ Replying to Anonymous Kouprey

That's a typo on my side; solutions are correct. Fixed the above latex math equation,
thanks!

Y

Anonymous Mantis 9mth #467fb =+ Resolved
SP21-MT-Q5(b)(i)

https://edstem.org/us/courses/51705/discussion/4462326?comment=10523011
https://edstem.org/us/courses/51705/discussion/4462326?comment=10523011
https://edstem.org/us/courses/51705/discussion/4462326?comment=10524010
https://edstem.org/us/courses/51705/discussion/4462326?comment=10524010
https://edstem.org/us/courses/51705/discussion/4462326?comment=10544976
https://edstem.org/us/courses/51705/discussion/4462326?comment=10544976
https://edstem.org/us/courses/51705/discussion/4462326?comment=10545159
https://edstem.org/us/courses/51705/discussion/4462326?comment=10545159
https://edstem.org/us/courses/51705/discussion/4462326?comment=10544976
https://edstem.org/us/courses/51705/discussion/4462326?comment=10493317
https://edstem.org/us/courses/51705/discussion/4462326?comment=10493317

i. (4.0 pt) What is the minimum amount of additional control logic and hardware may be needed to
implement this in the datapath for it to be functional? Select all that apply.

Path from MEMI1 output to MEM2 input.
Path from ALU to MEMI1 input.

Add additional state element.

Path from control logic to additional mux.
Path from ALU to MEM?2 input.

Path from control logic to MEMI1.

Path from MEM2 out to WB mux.

Path from control logic to MEM2.

Path from MEM2 to control logic.

Path from MEMI1 to control logic.

Add additional mux.

Path from control logic to additional state element.

Path from MEMI1 to WB mux.

ECOEECEEEREERONO

In order of the options given above: For read data output; We don’t need any sort of connection there;
the logic is done through control; For read data output; Signal for when we don’t find the data we need
in the first portion of main memory; set to 1 when we don’t find it and have to subsequently search
MEM2; upon a miss there, we'd fetch from disk (but that doesn’t matter at this point in this class);
Regardless of what happens in MEM?2, there will be no more logic undertaken so we don’t need a path
in that direction; For Mem1RW; For Mem2RW: For the absolute address with offset; For the absolute
address with offset; we don’t want this passed into MEM2 as the output of MEM1 because the path
no longer has the value we want which is the address; For selecting output value from DMEM1 or
DMEM2 to feed into the Oth input of the writeback mux; Selector to determine output of memory
output selector; We do not want additional memory states given otherwise that would change our
critical paths and it would not accomplish the output selector; Selector not needed if state element is
unnecessary.

What is the purpose of the additional mux here? Does it help select between MEM1 and MEM2?
Y

Erik Yang sTaFF 8mth #467bfa

we need an additional mux to see if the data address was found in MEM1; that if condition
means that we need some sort of selector to either go straight to writeback or ALU
Y

Anonymous Swan 9mth #467fa = v Resolved

FA21-MT-Q4.4

Q4.4 (4 points) Out of all numbers representable by this floating point system, what is the largest
number that can also be represented as an unsigned 16-bit integer?

Solution: 2'6 — 27 = 65408

The unsigned number can represent any nonnegative integer less than 2!, so we’re looking
for the largest integer less than 2'6 that can be represented by the floating point number. To
do this, we can try to create a 16-bit integer with the floating point number, and how we can
maximize the number created through this process.

The significand has 8 bits plus the implicit 1 (e.g. 1.1111 1111), so to represent a 16-bit
integer, we would need an exponent of 15 to create 1 1111 1111 0000 000.

Note that the lower 7 bits of any number created in this process will always be 0, because
they are not part of the significand. Thus all we can do to maximize this number is adjust the
significand to be as large as possible. The largest significand would be all 1s, as shown above.

In other words, the value we wantis Ob1.11111111 x2'%, which is equal to 2! — 27 = 65408.

Grading: Half credit was awarded for 26 — 1 and 2'6 — 28,

Is it basically saying that we want to find the largest u16int in floating point form so we max out
the significand and we want to find an exponent such that the significand of 1.11111111 will give

https://edstem.org/us/courses/51705/discussion/4462326?comment=10528104
https://edstem.org/us/courses/51705/discussion/4462326?comment=10528104
https://edstem.org/us/courses/51705/discussion/4462326?comment=10492870
https://edstem.org/us/courses/51705/discussion/4462326?comment=10492870

us a total of 16 bits which is an exponent of 15? How do we know that max out the significand is
the right method and will produce an integer instead of a FP decimal value?

Justin Yokota sTAFF 9mth #467ff

Well, ideally. However, the largest uint16 isn't necessarily representable. In this case, we
know that 216 is representable by the floating point system, and is barely larger than all
representable uint16s. So we can find the next largest floating point number and confirm
separately that the number is representable in uint16.

Anonymous Finch 9mth #467ef | v Resolved
SP21-MT-Q8(b)(ii)(A)

The answer key says the exponent for this value -2 * A(-100) * 0.625 is equal to 77. (I converted
their answer from hex to decimal). How did they arrive at this number? if the bias is 127, wouldn't
this give us an exponent of -50, not -100 as desired?

Lisa Yan sTAFF 8mth #467bed

The bias is 255 because we have 9 bits of exponent. Conversion then follows:

-1 x 0.625 x 2A(-100) # DECIMAL POINT
-1 x 0.101 x 2A(-100) # BINARY POINT
-1 x 1.01 x 27 (-101)

exp = -101 + 255 = 154 010011010

num = 1 010011010 010...0
1010 0110 1001 0..0 ... 0...0
Ox A 6 9 0 ... 0

Given the confusion, after Spring 2021 we started providing the bias explicitly on exams.
1

Anonymous Swan 9mth #467ee = v Resolved

First, note that strl contains the address of the bytes Hello World. These bytes are stored
contiguously in memory; H is at the lowest address, and d is at the highest address. A null byte
is stored immediately after d in memory.

FA21-MT-Q2.9 are arrays stored differently than other values? since if this string is contiguous,
why wouldn't 'H' be considered the most significant and thus stored at highest address for little
endian?

Justin Yokota sTAFF 9mth #467fe

"Most significant" and "Least significant" apply only to individual items; the byte "H" is both
the most and least significant byte of the zeroth element of str1. Arrays are always stored in
contiguous blocks, with the Oth block being at the lowest address.

Anonymous Swan 9mth #467ed v Resolved

FA21-MT-Q2.1

https://edstem.org/us/courses/51705/discussion/4462326?comment=10494311
https://edstem.org/us/courses/51705/discussion/4462326?comment=10494311
https://edstem.org/us/courses/51705/discussion/4462326?comment=10492606
https://edstem.org/us/courses/51705/discussion/4462326?comment=10492606
https://edstem.org/us/courses/51705/discussion/4462326?comment=10525675
https://edstem.org/us/courses/51705/discussion/4462326?comment=10525675
https://edstem.org/us/courses/51705/discussion/4462326?comment=10491180
https://edstem.org/us/courses/51705/discussion/4462326?comment=10491180
https://edstem.org/us/courses/51705/discussion/4462326?comment=10494277
https://edstem.org/us/courses/51705/discussion/4462326?comment=10494277
https://edstem.org/us/courses/51705/discussion/4462326?comment=10490916
https://edstem.org/us/courses/51705/discussion/4462326?comment=10490916

what is the difference between *str1 and *str2? if they are both pointers to character arrays (since
a literal string is an array of chars), why is str1 stored as static and not considered a local variable
while str2 is?

Myrah Shah sTaFF 9mth #467bbb
#467aef

Anonymous Spider 9mth #467eb + Resolved

[sp21 final] Can somebody please explain the rules?

6. C Structures
(a) (6.0 points) The Structure of Structures
i. Assuming a 32-bit architecture with RISC-V alignment rules:
Consider the following structure definition and code:

struct foo {
char a;
uintl6_t b;
char *c;
struct foo *d;

g

What is sizeof (struct foo) (Answer as an integer, with no units)?

12

ii. If b and c are swapped, this increases the size of the structure:

True

() True
() False

Luca Poulos 8mth #467bce

When creating structs, the fields with the most bytes determine the alignment to memory. In
this case, it is 4 bytes.

In this example, consider the struct address as 0x1000. Then a is at 0x1000, b is at 0x1001,
but we cannot insert c into 0x1003 (it will not be alligned with 4-byte memory address). So
instead, we add one byte of padding and store c at 0x1004. d is stored at 0x1008 for a total
of 12 bytes. We know d is 4 bytes because we're on 32-bit architecture with 4 bytes pointers.

Now if we swap the order of b and ¢, then we would need 1 + 3 padding for a, 4 bytes for c,
and 2 + 2 padding for b, and 4 bytes for d. Totaling 16 bytes instead of 12.

O

Anonymous Toad 9mth #467ea v Resolved

SP21-MT-Q8ab

https://edstem.org/us/courses/51705/discussion/4462326?comment=10517092
https://edstem.org/us/courses/51705/discussion/4462326?comment=10517092
https://edstem.org/us/courses/51705/discussion/threads/467aef
https://edstem.org/us/courses/51705/discussion/4462326?comment=10485409
https://edstem.org/us/courses/51705/discussion/4462326?comment=10485409
https://edstem.org/us/courses/51705/discussion/4462326?comment=10520997
https://edstem.org/us/courses/51705/discussion/4462326?comment=10520997
https://edstem.org/us/courses/51705/discussion/4462326?comment=10484398
https://edstem.org/us/courses/51705/discussion/4462326?comment=10484398

8. FLOATING POINT

For the following floating point questions, please use
parentheses around the exponent. For example, 27-12.

as the power operator in your answer. Do NOT put

(a) (3.0 pt) We define foating-point standard A to have 1 sign bit, 10 exponent bits, and 21 mantissa bits
and floating-point standard B to have 1 sign bit, 18 exponent bits, and 45 mantissa bits. All other rules of
IEEE 754 apply to standard A and B. How many more non-zero positive values can standard B represent
compared to standard A7 Please format vour answer as additions and subtractions of 2's powers.

g[iii . 24.:'; . 2:3] + 22]

{b) For the following parts, use a floating point standard with 1 sign bit, 9 exponent bits, and 22 mantissa bits.

i. In discussion 3, we defined the step size of x to be the distance between x and the smallest value
larger than x that can be completely represented. Now consider all floating-point numbers in the range
[2-120 4 2-110 gp).

A. (2.0 pt) What is the largest step size?

9—16

I'm pretty lost on how we got these answers. Any guidance?
Y

L Lisa Yan starF 8mth #467beb
8(a): #467aaa

8(b)(i): Check out Su22 2021 Past Exam Ed thread (link), search for Anonymous Partridge/#
635a

O

@ Dan Nguyen 9mth #467cb v Resolved
[FA21 MT1 Q5.2]

If not explicitly specified, do we assume we use 2 complement instead of unsigned numbers for
representing negative numbers in machine-language representation?
O

J Justin Yokota sTAFF 9mth #467cc

RISC-V specifically mandates that its numbers are interpreted as 2's complement signed
numbers. C also has a similar specification as of January 2024, and it's been a de facto
standard for much longer.

)

@ Dan Nguyen 9mth #467ec
thank you so much mr.yakulta

https://edstem.org/us/courses/51705/discussion/4462326?comment=10525381
https://edstem.org/us/courses/51705/discussion/4462326?comment=10525381
https://edstem.org/us/courses/51705/discussion/threads/467aaa
https://edstem.org/us/courses/51705/discussion/4462326?comment=10484086
https://edstem.org/us/courses/51705/discussion/4462326?comment=10484086
https://edstem.org/us/courses/51705/discussion/4462326?comment=10484234
https://edstem.org/us/courses/51705/discussion/4462326?comment=10484234
https://edstem.org/us/courses/51705/discussion/4462326?comment=10488452
https://edstem.org/us/courses/51705/discussion/4462326?comment=10488452

Anonymous Toad 9mth #467ca v Resolved

[SP21 MT1 Q7aii]

Why is the size of the struct not the size of its elements (1 + 4 = 5). Is this because we word-align
(and the closest next word would be 8?)
@ eoe

@ Andrew Liu STAFF 9mth #467cd

The struct must be padded to be a multiple of the element with the largest align. In this case,
the pointer has alignof 4, so we pad to the nearest multiple of 4. In this class, you can
assume that the alignment of a type is the same as its size.

Anonymous Toad 9mth #467bf =+ Resolved
[SP21 MT1]

For number 5, was only part a in scope? Also is part 7b in scope?
\2TE

@ Andrew Liu STAFF 9mth #467ce

Parts a and b are in scope for this semester's midterm

Anonymous Spider 9mth #467be v Resolved
[sp21 mt1 2b] is this in ? If so, where can | learn more about this ?
QD e

@ Andrew Liu STAFF 9mth #467cf

CALL is in scope. Some resources | would recommend are the lectures on CALL, the various
TA discussion slides on CALL, the discussion worksheets on CALL, and the homework
questions on CALL.

The discussion slides can be found in the central index.

Anonymous Kangaroo 9mth #467bd v Resolved
SP21-Final-Q7b,

https://edstem.org/us/courses/51705/discussion/4462326?comment=10483269
https://edstem.org/us/courses/51705/discussion/4462326?comment=10483269
https://edstem.org/us/courses/51705/discussion/4462326?comment=10484280
https://edstem.org/us/courses/51705/discussion/4462326?comment=10484280
https://edstem.org/us/courses/51705/discussion/4462326?comment=10483240
https://edstem.org/us/courses/51705/discussion/4462326?comment=10483240
https://edstem.org/us/courses/51705/discussion/4462326?comment=10484285
https://edstem.org/us/courses/51705/discussion/4462326?comment=10484285
https://edstem.org/us/courses/51705/discussion/4462326?comment=10482075
https://edstem.org/us/courses/51705/discussion/4462326?comment=10482075
https://edstem.org/us/courses/51705/discussion/4462326?comment=10484289
https://edstem.org/us/courses/51705/discussion/4462326?comment=10484289
https://edstem.org/us/courses/51705/discussion/4462326?comment=10481838
https://edstem.org/us/courses/51705/discussion/4462326?comment=10481838

B. What changes would you need to make in order for the instruction to be able to execute
correctly? Assume all modifications and additions are done on top of the existing single cycle
datapath. Select all that apply

[0 Modify the control signals to the ALU.

O Modify Branch Comparator logic.
| Modify the control logic for WBSel.

| Modify the control logic for parsing instr[31:0].

O Modify control logic for ALU/ALUSel.

[0 Add an additional comparator.

[J Add additional control signals for the writeback mux.
[0 Modify ALU buses.

| Modify the control logic for the Branch Comparator.
[0 None of the above.

7. Datapath

{a) NEWINSTR

Given the standard RISC-V datapath (Figure 1), determine if the following is implementable or not
without any additional functional units? Assume the instruction is not a pseudoinstruction encoding.

;I RegFile ik
IMEM | — DataD J—‘ o] | ALU DMEM ?
st 11:7] 1
) SAGED aan > Addr DataR 0
A T - 5 Data AN }
i34 20] A
T AddrB /\ —=1 J_'_/./

L=
Branch
Comp.
e

7
L

PCSel insA[21:0] Imm&el RegWEn Brun BrEq BT BSe! ASel ALUSel MemRW WESel

Hi,

Figure 1
i. Is Null

A, is_null rd, rsl: check if an input given through rsi is considered NULL or not hy C
standard. The result is returned through rd as a bit.

Could I get an explanation as to how these modifications and additions would allow us to
implement the function is_null. | am mainly confused as to how we send the result back through
rd as a bit after we modify the control logic for the branch comparator.

®

Andrew Liu STAFF 9mth #467da

NULL is just 0, so you can allow WBSel to send back rs1 ==

https://edstem.org/us/courses/51705/discussion/4462326?comment=10484300
https://edstem.org/us/courses/51705/discussion/4462326?comment=10484300

Y

Anonymous Swan 9mth #467bc =+ Resolved

l Sign
9 exp
22 manthissa,

—0.625 ¥ 2P = (l0ll ¥ 2% 2%

=l * 27)
=100 % 27"
0625 = 0.101 = 010l * 273

1010
+ |

-0625= 101 + 273

xpfred = -0 +(-255) = - 355
255 Ob 010110001

1010011100
+ |

—355: |0100]))01
ontissa: Ol 0000 0000 OO0 0000 O
Sty |
PP L [01007))0 ol 0000 00OC 0O 00C0 000

Sp21-MT-Q8bii.A.

for the conversion of -2A-100 * 0.625, this is my work so far but i'm kind of stuck on the
conversion of the exponent field. i calculated the bias to be -255 using standard bias with 9
exponent bits but when it convert using 2's complement, i get 10 bits while preserving the sign
but only 9 exponent bits are allowed?

1\

@ Andrew Liu STAFF 9mth #467db

You should subtract the bias from the value to get the value to be stored in binary, since
binary + bias = value
)

Anonymous Swan 9mth #467bb v/ Resolved
SP21-MT-Q8b)

how is the step size calculated?

(b) For the following parts, use a floating point standard with 1 sign bit, 9 exponent bits, and 22 mantissa bits.

i. In discussion 3, we defined the step size of x to be the distance between x and the smallest value
larger than x that can be completely represented. Now consider all floating-point numbers in the range
[2—120 + 2—110’ 80]

A. (2.0 pt) What is the largest step size?

2—16

Y

@ Andrew Liu sTAFF 9mth #467dc
Step size is the value of the LSB times 2 to the exponent. Thus, step size increases as the
absolute value of the number goes up. In this case, you should calculate the step size of 80.
Since 801is 1.25 x 64 = 1.01, x 29, the stepsize is 2722 (value of LSB) x
26 (exponent) = 2716
Y

https://edstem.org/us/courses/51705/discussion/4462326?comment=10480026
https://edstem.org/us/courses/51705/discussion/4462326?comment=10480026
https://edstem.org/us/courses/51705/discussion/4462326?comment=10484305
https://edstem.org/us/courses/51705/discussion/4462326?comment=10484305
https://edstem.org/us/courses/51705/discussion/4462326?comment=10479690
https://edstem.org/us/courses/51705/discussion/4462326?comment=10479690
https://edstem.org/us/courses/51705/discussion/4462326?comment=10484315
https://edstem.org/us/courses/51705/discussion/4462326?comment=10484315

Anonymous Swan 9mth #467fd

So the exponent we multiply by is the exponent of the largest number in the range of
values we're trying to find and the LSB is the smallest bit value in the number exponent
bits we have? What is the intuition behind why this equation works? | can't seem to find
the equation in lecture somewhere. Thanks!

Lisa Yan sTAFF 8mth #467bec
4 Replying to Anonymous Swan
LO6-Slide 25 gives some reasonable intuition:

gic: Step Size

* What is the next representable number after y? Before y?
31 30 23 22 0

[0 [1000 eee1 111 @e@e @AM @APE DAeE Peoo y

[o [1000 eee1 111 00@P GEE@ 0APe 0RER 0PP1 next float after y

y + ((.0.01),, x 20129-127))

y + (2-23 % 2(2)) Because we have a fixed # of bits, we cannot
represent all numbers in a range.
y + 2° 21 Step size is the spacing between consecutive floats
with a given exponent.
* Bigger exponents = bigger step size.
* Smaller exponents = smaller step size!

“step size”

Berkeley

06-Floating Point (25)

Anonymous Mink 8mth #467bfb
Where does the 64 come from?

Anonymous Swan 8mth #467cbb

So the step size can be different in between that range due to the different exponent
bits so the largest step size would be to calculate the step size of y =80 and y + 17 But

since 80 is the largest possible value in the range, would this also be equal to the step
sizeofy=80andy-1?

Anonymous Dogfish 9mth #467ba v Resolved

For Fa21-MT-Q5.1, can we use lw instead and increment addresses by 4?

@ Andrew Liu STAFF 9mth #467dd

No, since that would give a high chance of missing the null terminator and infinitely looping.

Anonymous Stork 9mth #467af v/ Resolved
SP21-MT-Q2

"Compilers produce larger code than interpreters but do it faster"

Should we know how to compare compilers to interpreters?

@ Andrew Liu STAFF 9mth #467de

https://edstem.org/us/courses/51705/discussion/4462326?comment=10493821
https://edstem.org/us/courses/51705/discussion/4462326?comment=10493821
https://edstem.org/us/courses/51705/discussion/4462326?comment=10525405
https://edstem.org/us/courses/51705/discussion/4462326?comment=10525405
https://edstem.org/us/courses/51705/discussion/4462326?comment=10493821
https://edstem.org/us/courses/51705/discussion/4462326?comment=10528872
https://edstem.org/us/courses/51705/discussion/4462326?comment=10528872
https://edstem.org/us/courses/51705/discussion/4462326?comment=10533457
https://edstem.org/us/courses/51705/discussion/4462326?comment=10533457
https://edstem.org/us/courses/51705/discussion/4462326?comment=10479173
https://edstem.org/us/courses/51705/discussion/4462326?comment=10479173
https://edstem.org/us/courses/51705/discussion/4462326?comment=10484322
https://edstem.org/us/courses/51705/discussion/4462326?comment=10484322
https://edstem.org/us/courses/51705/discussion/4462326?comment=10476289
https://edstem.org/us/courses/51705/discussion/4462326?comment=10476289
https://edstem.org/us/courses/51705/discussion/4462326?comment=10484325
https://edstem.org/us/courses/51705/discussion/4462326?comment=10484325

You should know the basics of what makes an interpreted language different than a
compiled one. In my opinion, this question is a relatively obscure MC when comparing the
two

Anonymous Magpie 9mth #467ae = v Resolved

SP21-MT-Q1

For question 1c¢) part vi where it asks -25 in bias notation (with an added bias of -63) how is this
value in the range of numbers we can represent since | thought the new range would be [63, 190]
since it is the unsigned range plus the bias and if you add the bias to -25 the new shifted value
would be 38 which is not in the range of values you can represent?

@ Andrew Liu STAFF 9mth #467df
You add the bias to the bits to get the value. So, -25 is the value, and if you compute bits +
bias = value, you find that bits = value - bias = -25 - (-63) = 38, which is representable in our
bits.

Anonymous Swan 9mth #467f =+ Resolved

i. (3.0 pt) What should be line A? You don’t need a sizeof() because unit8 t is always defined as one
byte.

calloc(size / 8 + 1)

[SP21-MT-Q7b]

for part i, does the division round down? so if size if 4 bits, then we would have 4/8+1 =0+1 =1
byte to allocate? also, what is the reason behind using calloc instead of malloc here?

for partiii, i'm thinking we need the one to or with the nth bit to turn it into a one but why do we
need to left shift?

@ Andrew Liu STAFF 9mth #467aa

Yes, C integer division is defined as truncating towards 0, see C11 6.5.5 pé6:
http://port70.net/%7Ensz/c/c11/n1570.htmlI#6.5.5, and you are exactly right about the plus 1
accounting for this truncating behavior

We use calloc because the bits must be initialized to 0.

For part iii, we left shift it to place the 1 in the correct bit. (e.g. 1 << 2 =0b0100)

Anonymous Swan 9mth #467e @ v Resolved

iv. load sl->next into t0O

Iw t0 t0(4)

[SP21-Final-Q6b(4)] how do we know that the next variable is in the 4 byte offset of t0 if t0
currently has s1 (which | believe is the struct)?

https://edstem.org/us/courses/51705/discussion/4462326?comment=10469563
https://edstem.org/us/courses/51705/discussion/4462326?comment=10469563
https://edstem.org/us/courses/51705/discussion/4462326?comment=10484333
https://edstem.org/us/courses/51705/discussion/4462326?comment=10484333
https://edstem.org/us/courses/51705/discussion/4462326?comment=10359310
https://edstem.org/us/courses/51705/discussion/4462326?comment=10359310
https://edstem.org/us/courses/51705/discussion/4462326?comment=10378400
https://edstem.org/us/courses/51705/discussion/4462326?comment=10378400
http://port70.net/%7Ensz/c/c11/n1570.html#6.5.5
https://edstem.org/us/courses/51705/discussion/4462326?comment=10358144
https://edstem.org/us/courses/51705/discussion/4462326?comment=10358144

QD e

@ Andrew Liu STAFF 9mth #467ab

We know this based on the struct. A struct is a package of variables guaranteed to be
contiguous in memory, so we know that offset of 0 is data, and an offset of 4 is next.
\2TE

Anonymous Swan 9mth #467c = v Resolved

Q2.1 (3.5 points) 37

Solution: Answer: 36. The adjacent floating point numbers are 36 (0b 0 10100 0010) and 38
(0b 0 10100 0011)

Q2.2 (3.5 points) 1/3 (whose binary representation is 0b0.0101 0101...)

Solution: Answer: 21 276 = 0.328125. We can move the binary point to get our floating
point representation 0b1.010101. . . * 272, The mantissa rounds down, so our float would be
0b1.0101 %272, or 0b10101 %275 or 21 % 276

FA21-Final-Q2.1

if the resulting adjacent representable numbers to 37 are 36 and 38, why would we choose to
round down instead of up if they are both equally apart? is it related to when we convert 36 to FP
representation and remove the bit to fit 4-bit significant, we get the rounded 36 whereas for 38
we would need to flip the LSB?

Justin Yokota STAFF 9mth #467d

Per the question setup, rounding always goes toward the most even number; in this case, 36
has a 0 bit as the LSB, and therefore is preferred over 38.

Anonymous Swan 9mth #467a @ v Resolved

(a) (1.0 pt) Which of the following representation systems have two representations for the decimal number
zero?

[J Bias notation

[| Signed-magnitude
[| Floating Point

O Two’s complement
[0 Unsigned

SP21-MT-Q1a

why does floating point have two zeros? does it come from the norm and denorm or just the
different sign bit?
\2RTE

@ Andrew Liu STAFF 9mth #467b

A zeroin FP is defined as 0 exp and 0 mantissa. Note that this does not constrain the sign bit,
so we have +0 and -0 in FP.

https://edstem.org/us/courses/51705/discussion/4462326?comment=10378406
https://edstem.org/us/courses/51705/discussion/4462326?comment=10378406
https://edstem.org/us/courses/51705/discussion/4462326?comment=10323364
https://edstem.org/us/courses/51705/discussion/4462326?comment=10323364
https://edstem.org/us/courses/51705/discussion/4462326?comment=10323799
https://edstem.org/us/courses/51705/discussion/4462326?comment=10323799
https://edstem.org/us/courses/51705/discussion/4462326?comment=10311380
https://edstem.org/us/courses/51705/discussion/4462326?comment=10311380
https://edstem.org/us/courses/51705/discussion/4462326?comment=10315195
https://edstem.org/us/courses/51705/discussion/4462326?comment=10315195

This comment was deleted

Eddy Byun sTaFF 9mth #467ad
For 1.6, I'd first recommend converting the hex number to binary
0x85 = 0b 1000 0101

The problem states that we stored this number as an unsigned one-byte integer.

To convert this to decimal, we do the following addition:

20422427=14+4+128=133

https://edstem.org/us/courses/51705/discussion/4462326?comment=10411671
https://edstem.org/us/courses/51705/discussion/4462326?comment=10411671

