Parallel Processing: SIMD
(Single Instruction/Multiple Data)
Agenda

• 61C – the big picture
• Parallel processing
• Single instruction, multiple data
• SIMD matrix multiplication
• Loop unrolling
• Memory access strategy - blocking
• And in Conclusion, …
61C Topics so far …

• What we learned:
 • Binary numbers
 • C
 • Pointers
 • Assembly language
 • Processor micro-architecture
 • Pipelining
 • Caches
 • Floating point

• What does this buy us?
 • Promise: execution speed
 • Let’s check!
Reference Problem

• **Matrix multiplication**
 • Basic operation in many engineering, data, and imaging processing tasks
 • Ex: Image filtering, noise reduction, …
 • Core operation in Neural Nets and Deep Learning
 • Image classification (cats …)
 • Robot Cars
 • Machine translation
 • Fingerprint verification
 • Automatic game playing

• **dgemm**
 • double-precision floating-point general matrix-multiply
 • Standard well-studied and widely used routine
 • Part of Linpack/Lapack
2D-Matrices

- Square matrix of dimension NxN
 - i indexes through rows
 - j indexes through columns
Matrix Multiplication

\[C = A \times B \]
\[C_{ij} = \sum_k (A_{ik} \times B_{kj}) \]
2D Matrix Memory Layout

- `a[] []` in C uses row-major
- Fortran uses column-major
- Our examples use column-major

\[
\begin{array}{cccc}
 a_{00} & a_{01} & a_{02} & a_{03} \\
 a_{10} & a_{11} & a_{12} & a_{13} \\
 a_{20} & a_{21} & a_{22} & a_{23} \\
 a_{30} & a_{31} & a_{32} & a_{33} \\
\end{array}
\]

Row-Major

\[
\begin{array}{c}
 a_{13} \quad 0x38 \\
 a_{12} \quad 0x30 \\
 a_{11} \quad 0x28 \\
 a_{10} \quad 0x20 \\
 a_{03} \quad 0x18 \\
 a_{02} \quad 0x10 \\
 a_{01} \quad 0x08 \\
 a_{00} \quad 0x00 \\
\end{array}
\]

Column-Major

\[
\begin{array}{c}
 a_{31} \quad 0x38 \\
 a_{21} \quad 0x30 \\
 a_{11} \quad 0x28 \\
 a_{01} \quad 0x20 \\
 a_{30} \quad 0x18 \\
 a_{20} \quad 0x10 \\
 a_{10} \quad 0x08 \\
 a_{00} \quad 0x00 \\
\end{array}
\]

- `aij : a[i*N + j]`
- `aij : a[i + j*N]`
Simplifying Assumptions…

- We want to keep the examples (somewhat) manageable…
- We will keep the matrixes square
 - So both matrixes are the same size with the same number of rows and columns
- We will keep the matrixes reasonably aligned
 - So size % a reasonable power of 2 == 0
dgemm Reference Code: Python

```python
def dgemm(N, a, b, c):
    for i in range(N):
        for j in range(N):
            c[i+j*N] = 0
        for k in range(N):
            c[i+j*N] += a[i+k*N] * b[k+j*N]
```

<table>
<thead>
<tr>
<th>N</th>
<th>Python [Mflops]</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>5.4</td>
</tr>
<tr>
<td>160</td>
<td>5.5</td>
</tr>
<tr>
<td>480</td>
<td>5.4</td>
</tr>
<tr>
<td>960</td>
<td>5.3</td>
</tr>
</tbody>
</table>

- 1 MFLOP = 1 Million floating-point operations per second (fadd, fmul)
- **dgemm**(N ...) takes $2 \times N^3$ flops
• $c = a \times b$
• a, b, c are $N \times N$ matrices

```c
void dgemm_scalar(int N, double *a, double *b, double *c) {
    for (int i=0; i<N; i++)
        for (int j=0; j<N; j++) {
            double cij = 0;
            for (int k=0; k<N; k++)
                cij += a[i+k*N] * b[k+j*N];
            // c[i][j]
            c[i+j*N] = cij;
        }
}
```
Timing Program Execution

```c
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main(void) {
    // start time
    // Note: clock() measures execution time, not real time
    // big difference in shared computer environments
    // and with heavy system load
    clock_t start = clock();

    // task to time goes here:
    // dgemm(N, ...);

    // "stop" the timer
    clock_t end = clock();

    // compute execution time in seconds
    double delta_time = (double)(end-start)/CLOCKS_PER_SEC;
}
```
C versus Python

<table>
<thead>
<tr>
<th>N</th>
<th>C [GFLOPS]</th>
<th>Python [GFLOPS]</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>1.30</td>
<td>0.0054</td>
</tr>
<tr>
<td>160</td>
<td>1.30</td>
<td>0.0055</td>
</tr>
<tr>
<td>480</td>
<td>1.32</td>
<td>0.0054</td>
</tr>
<tr>
<td>960</td>
<td>0.91</td>
<td>0.0053</td>
</tr>
</tbody>
</table>

Which other class gives you this kind of power? We could stop here ... but why? Let’s do better!
Agenda

• 61C – the big picture
• **Parallel processing**
• Single instruction, multiple data
• SIMD matrix multiplication
• Amdahl’s law
• Loop unrolling
• Memory access strategy - blocking
• And in Conclusion, …
Why Parallel Processing?

- CPU Clock Rates are no longer increasing
 - Technical & economic challenges
 - Advanced cooling technology too expensive or impractical for most applications
 - Energy costs are prohibitive
- Parallel processing is only path to higher speed
 - Compare airlines:
 - Maximum air-speed limited by economics
 - Use more and larger airplanes to increase throughput
 - (And smaller seats …)
Using Parallelism for Performance

• Two basic approaches to parallelism:
 • Multiprogramming
 • run multiple independent programs in parallel
 • “Easy”
 • Parallel computing
 • run one program faster
 • “Hard”

• We’ll focus on parallel computing in the next few lectures
Single-Instruction/Single-Data Stream (SISD)

- Sequential computer that exploits no parallelism in either the instruction or data streams. Examples of SISD architecture are traditional uniprocessor machines
 - E.g. Our RISC-V processor
 - We consider superscalar as SISD because the **programming model** is sequential

This is what we did up to now in 61C
Single-Instruction/Multiple-Data Stream (SIMD or “sim-dee”)

- SIMD computer processes multiple data streams using a single instruction stream, e.g., Intel SIMD instruction extensions or NVIDIA Graphics Processing Unit (GPU)
Multiple-Instruction/Multiple-Data Streams (MIMD or “mim-dee”)

- Multiple autonomous processors simultaneously executing different instructions on different data.
 - MIMD architectures include multicore and Warehouse-Scale Computers

Topic of Lecture 19 and beyond.
Multiple-Instruction/Single-Data Stream (MISD)

- Multiple-Instruction, Single-Data stream computer that processes multiple instruction streams with a single data stream.
 - Historical significance

This has few applications. Not covered in 61C.
Flynn* Taxonomy, 1966

<table>
<thead>
<tr>
<th>Instruction Streams</th>
<th>Single</th>
<th>Multiple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>SISD: Intel Pentium 4</td>
<td>SIMD: SSE instructions of x86</td>
</tr>
<tr>
<td>Multiple</td>
<td>MISD: No examples today</td>
<td>MIMD: Intel Xeon e5345 (Clovertown)</td>
</tr>
</tbody>
</table>

- SIMD and MIMD are currently the most common parallelism in architectures – usually both in same system!
- Most common parallel processing programming style: Single Program Multiple Data ("SPMD")
 - Single program that runs on all processors of a MIMD
 - Cross-processor execution coordination using synchronization primitives

*Prof. Michael Flynn, Stanford
Agenda

• 61C – the big picture
• Parallel processing
• **Single instruction, multiple data**
• SIMD matrix multiplication
• Amdahl’s law
• Loop unrolling
• Memory access strategy - blocking
• And in Conclusion, …
SIMD – “Single Instruction Multiple Data”
SIMD (Vector) Mode

SIMD Mode

```
A7 A6 A5 A4 A3 A2 A1 A0
  +
B7 B6 B5 B4 B3 B2 B1 B0

= A7+B7 A6+B6 A5+B5 A4+B4 A3+B3 A2+B2 A1+B1 A0+B0
```

Scalar Mode

```
A
  +
B

= A+B
```
SIMD Applications & Implementations

- **Applications**
 - Scientific computing
 - Matlab, NumPy
 - Graphics and video processing
 - Photoshop, ...
 - Big Data
 - Deep learning
 - Gaming

- **Implementations**
 - x86
 - ARM
 - RISC-V vector extensions
 - Video cards
First SIMD Extensions:
MIT Lincoln Labs TX-2, 1957
Intel x86 SIMD: Continuous Evolution

MMX 1997

- **1999**
 - SSE
 - 70 instr
 - Single-Precision Vectors
 - Streaming operations

- **2000**
 - SSE2
 - 144 instr
 - Double-precision Vectors
 - 8/16/32 64/128-bit vector integer

- **2004**
 - SSE3
 - 13 instr
 - Complex Data

- **2006**
 - SSSE3
 - 32 instr
 - Decode

- **2007**
 - SSE4.1
 - 47 instr
 - Video
 - Graphics building blocks
 - Advanced vector instr

- **2008**
 - SSE4.2
 - 8 instr
 - String/XML processing
 - POP-Count
 - CRC

- **2009**
 - AES-NI
 - 7 instr
 - Encryption and Decryption
 - Key Generation

- **2010/11**
 - AVX
 - ~100 new instr.
 - ~300 legacy sse instr.
 - updated 256-bit vector
 - 3 and 4-operand instructions
<table>
<thead>
<tr>
<th>Year</th>
<th>Architecture</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>Westmere</td>
<td>32 nm, SSE 4.2, DDR3, PCIe2, AVX (256 bit registers)</td>
</tr>
<tr>
<td>2012</td>
<td>Sandy Bridge</td>
<td>32 nm, DDR3, PCIe3</td>
</tr>
<tr>
<td>2013</td>
<td>Ivy Bridge</td>
<td>22 nm, DDR3, PCIe3</td>
</tr>
<tr>
<td>2014</td>
<td>Haswell</td>
<td>22 nm, AVX2 (new instructions), DDR4, PCIe3</td>
</tr>
<tr>
<td>2015</td>
<td>Broadwell</td>
<td>14 nm, DDR4, PCIe3</td>
</tr>
<tr>
<td>Future</td>
<td>Skylake</td>
<td>14 nm, AVX 3.2 (512 bit registers), DDR4, PCIe4</td>
</tr>
</tbody>
</table>

Intel **Advanced Vector eXtensions**

AVX also supported by AMD processors

AVX Registers getting wider, instruction set getting richer

Laptop CPU Specs

$ sysctl -a | grep cpu

hw.physicalcpu: 2
hw.logicalcpu: 4

machdep.cpu.brand_string:
 Intel(R) Core(TM) i7-5557U CPU @ 3.10GHz

machdep.cpu.features:
 FPU VME DE PSE TSC MSR PAE MCE CX8 APIC SEP
 MTRR PGE MCA CMOV PAT PSE36 CLFSH DS ACPI MMX FXSR SSE SSE2 SS
 HTT TM PBE SSE3 PCLMULQDQ DTES64 MON DSCPL VMX EST TM2 SSSE3 FMA
 CX16 TPR PDCM SSE4.1 SSE4.2 x2APIC MOVBE POPCNT AES PCID XSAVE
 OSXSAVE SEGLIM64 TSCTMR AVX1.0 RDRAND F16C

machdep.cpu.leaf7_features:
 SMEP ERMS RDWRFSGS TSC_THREAD_OFFSET
 BMI1 AVX2 BMI2_INVPCID SMAP RDSEED ADX IPT FPU_CSDS
AVX SIMD Registers:
Greater Bit Extensions Overlap Smaller Versions
Intel SIMD Data Types

SSE and AVX-128 types

AVX-256 types

(Now also AVX-512 available (but not on Hive): 16x float and 8x double)
Agenda

• 61C – the big picture
• Parallel processing
• Single instruction, multiple data
• **SIMD matrix multiplication**
• Loop unrolling
• Memory access strategy - blocking
• And in Conclusion, …
Problem

• Today’s compilers can generate SIMD code
• But in some cases, better results by hand (assembly)
• We will study x86 (not using RISC-V as no vector hardware widely available yet)
 • Over 1000 instructions to learn …
• Can we use the compiler to generate all non-SIMD instructions?
x86 SIMD “Intrinsics”

```
__m256d __mm256_mul_pd (__m256d a, __m256d b)

Synopsis
__m256d __mm256_mul_pd (__m256d a, __m256d b)
#include "immintrin.h"
Instruction: vmulpd ymm, ymm, ymm
CPUID Flags: AVX

Description
Multiply packed double-precision (64-bit) floating-point elements in a and b, and store the results in dst.

Operation
FOR j := 0 to 3
    i := j*64
ENDFOR

dst[MAX:256] := 0

Performance
<table>
<thead>
<tr>
<th>Architecture</th>
<th>Latency</th>
<th>Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haswell</td>
<td>5</td>
<td>0.5</td>
</tr>
<tr>
<td>Ivy Bridge</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Sandy Bridge</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>
```

- **Intrinsic** assembly instruction
- 4 parallel multiplies
- 2 instructions per clock cycle (CPI = 0.5)
Intrinsics: Direct access to assembly from C

<table>
<thead>
<tr>
<th>Type</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>__m256</td>
<td>256-bit as eight single-precision floating-point values, representing a YMM register or memory location</td>
</tr>
<tr>
<td>__m256d</td>
<td>256-bit as four double-precision floating-point values, representing a YMM register or memory location</td>
</tr>
<tr>
<td>__m256i</td>
<td>256-bit as integers, (bytes, words, etc.)</td>
</tr>
<tr>
<td>__m128</td>
<td>128-bit single precision floating-point (32 bits each)</td>
</tr>
<tr>
<td>__m128d</td>
<td>128-bit double precision floating-point (64 bits each)</td>
</tr>
</tbody>
</table>
Intrinsics AVX Code Nomenclature

<table>
<thead>
<tr>
<th>Marking</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>[s/d]</td>
<td>Single- or double-precision floating point</td>
</tr>
<tr>
<td>[i/u]nnn</td>
<td>Signed or unsigned integer of bit size (nnn), where (nnn) is 128, 64, 32, 16, or 8</td>
</tr>
<tr>
<td>[ps/pd/sd]</td>
<td>Packed single, packed double, or scalar double</td>
</tr>
<tr>
<td>epi32</td>
<td>Extended packed 32-bit signed integer</td>
</tr>
<tr>
<td>si256</td>
<td>Scalar 256-bit integer</td>
</tr>
</tbody>
</table>
Raw Double-Precision Throughput

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>i7-5557U</td>
</tr>
<tr>
<td>Clock rate (sustained)</td>
<td>3.1 GHz</td>
</tr>
<tr>
<td>Instructions per clock (mul_pd)</td>
<td>2</td>
</tr>
<tr>
<td>Parallel multiplies per instruction</td>
<td>4</td>
</tr>
<tr>
<td>Peak double FLOPS</td>
<td>24.8 GFLOPS</td>
</tr>
</tbody>
</table>

Actual performance is lower because of overhead

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
Vectorized Matrix Multiplication

Inner Loop:

```c
for i ...; i+=4
for j ...

_m256d c0 = {0,0,0,0};
for (int k=0; k<N; k++) {
    c0 = _mm256_fmadd_pd(
        _mm256_load_pd(a+i+k*N),
        _mm256_broadcast_sd(b+k+j*N),
        c0);
}
_mm256_store_pd(c+i+j*N, c0);
```

```c
i += 4
```
“Vectorized” dgemm

```c
// AVX intrinsics; P&H p. 227
void dgemm_avx(int N, double *a, double *b, double *c) {
    // avx operates on 4 doubles in parallel
    for (int i=0; i<N; i+=4) {
        for (int j=0; j<N; j++) {
            // c0 = c[i][j]
            __m256d c0 = {0,0,0,0};
            for (int k=0; k<N; k++) {
                c0 = _mm256_add_pd(
                    c0,  // c0 += a[i][k] * b[k][j]
                    __mm256_mul_pd(
                        __mm256_load_pd(a+i+k*N),
                        __mm256_broadcast_sd(b+k+j*N)));
            }
            __mm256_store_pd(c+i+j*N, c0);  // c[i,j] = c0
        }
    }
}
```
Performance

<table>
<thead>
<tr>
<th>N</th>
<th>Gflops</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>scalar</td>
<td>avx</td>
</tr>
<tr>
<td>32</td>
<td>1.30</td>
<td>4.56</td>
</tr>
<tr>
<td>160</td>
<td>1.30</td>
<td>5.47</td>
</tr>
<tr>
<td>480</td>
<td>1.32</td>
<td>5.27</td>
</tr>
<tr>
<td>960</td>
<td>0.91</td>
<td>3.64</td>
</tr>
</tbody>
</table>

- 4x faster
- But still << theoretical 25 GFLOPS!
• Midterm 2: 4/10, 8-10pm
 • Room assignments forthcoming
• Project 4 released, due Monday April 15th 23:59 pacific time
 • Autograder for performance runs on a batch basis
• No graded lab this week: MT2 review instead
• P/NP deadline is this Friday
• Click in sometime between now and the end of lecture…
Agenda

• 61C – the big picture
• Parallel processing
• Single instruction, multiple data
• SIMD matrix multiplication
• Loop unrolling
• Memory access strategy - blocking
• And in Conclusion, …
Loop Unrolling

- On high performance processors, optimizing compilers perform “loop unrolling” operation to expose more parallelism and improve performance:

  ```c
  for(i=0; i<N; i++)
      x[i] = x[i] + s;
  ```

- Could become:

  ```c
  for(i=0; i<N; i+=4) {
      x[i]   = x[i] + s;
      x[i+1] = x[i+1] + s;
      x[i+2] = x[i+2] + s;
      x[i+3] = x[i+3] + s;
  }
  ```

1. Expose data-level parallelism for vector (SIMD) instructions or super-scalar multiple instruction issue

2. Mix pipeline with unrelated operations to help with reduce hazards

3. Reduce loop “overhead”

4. Makes code size larger
Amdahl’s Law* applied to \texttt{dgemm}

- Measured \texttt{dgemm} performance
 - Peak 5.5 GFLOPS
 - Large matrices 3.6 GFLOPS
 - Processor 24.8 GFLOPS
- Why are we not getting (close to) 25 GFLOPS?
 - Something else (not floating-point ALU) is limiting performance!
 - But what? Possible culprits:
 - Cache
 - Hazards
 - Let’s look at both!
“Vectorized” dgemm: Pipeline Hazards

```
// AVX intrinsics; P&H p. 227
void dgemm_avx(int N, double *a, double *b, double *c) {
    // avx operates on 4 doubles in parallel
    for (int i=0; i<N; i+=4) {
        for (int j=0; j<N; j++) {
            // c0 = c[i][j]
            __m256d c0 = {0,0,0,0};
            for (int k=0; k<N; k++) {
                c0 = __mm256_add_pd(c0, // c0 += a[i][k] * b[k][j]
                    __mm256_mul_pd(__mm256_load_pd(a+i+k*N),
                    __mm256_broadcast_sd(b+k+j*N)));
            }
            __mm256_store_pd(c+i+j*N, c0); // c[i,j] = c0
        }
    }
}
```

“add_pd” depends on result of “mult_pd” which depends on “load_pd”
Loop Unrolling

```c
void dgemm_unroll(int n, double *A, double *B, double *C) {
    for (int i=0; i<n; i += UNROLL*4) {
        for (int j=0; j<n; j++) {
            __m256d c[4];
            for (int x=0; x<UNROLL; x++)
                c[x] = _mm256_load_pd(C+i+x*4+j*n);
            for (int k=0; k<n; k++) {
                __m256d b = _mm256_broadcast_sd(B+k+j*n);
                for (int x=0; x<UNROLL; x++)
                    c[x] = _mm256_add_pd(c[x],
                                        _mm256_mul_pd(_mm256_load_pd(A+n*k+x*4+i), b));
            }
        }
        _mm256_store_pd(C+i+x*4+j*n, c[0]);
    }
}
```

How do you verify that the generated code is actually unrolled?
Performance

<table>
<thead>
<tr>
<th>N</th>
<th>scalar</th>
<th>avx</th>
<th>unroll</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>1.30</td>
<td>4.56</td>
<td>12.95</td>
</tr>
<tr>
<td>160</td>
<td>1.30</td>
<td>5.47</td>
<td>19.70</td>
</tr>
<tr>
<td>480</td>
<td>1.32</td>
<td>5.27</td>
<td>14.50</td>
</tr>
<tr>
<td>960</td>
<td>0.91</td>
<td>3.64</td>
<td>6.91</td>
</tr>
</tbody>
</table>
Agenda

• 61C – the big picture
• Parallel processing
• Single instruction, multiple data
• SIMD matrix multiplication
• Amdahl’s law
• Loop unrolling
• Memory access strategy - blocking
• And in Conclusion, …
FPU versus Memory Access

- How many floating-point operations does matrix multiply take?
 - \(F = 2 \times N^3 \) (\(N^3 \) multiplies, \(N^3 \) adds)

- How many memory load/stores?
 - \(M = 3 \times N^2 \) (for A, B, C)

- Many more floating-point operations than memory accesses
 - \(q = \frac{F}{M} = \frac{2}{3} \times N \)
 - Good, since arithmetic is faster than memory access
 - Let’s check the code …
But memory is accessed repeatedly

- $q = \frac{F}{M} = 1.6!$ (1.25 loads and 2 floating-point operations)

Inner loop:

```c
for (int k=0; k<N; k++) {
    c0 = _mm256_add_pd(
        c0, // c0 += a[i][k] * b[k][j]
        _mm256_mul_pd(
            _mm256_load_pd(a+i+k*N),
            _mm256_broadcast_sd(b+k+j*N)));
}
```
• Where are the operands (A, B, C) stored?
• What happens as N increases?
• Idea: arrange that most accesses are to fast cache!
Blocking

• **Idea:**
 - Rearrange code to use values loaded in cache many times
 - Only “few” accesses to slow main memory (DRAM) per floating point operation
 - -> throughput limited by FP hardware and cache, not slow DRAM
 - P&H, RISC-V edition p. 465
Blocking Matrix Multiply
(divide and conquer: sub-matrix multiplication)

\[
\begin{align*}
X & \quad = \\
\end{align*}
\]
Memory Access Blocking

```c
// Cache blocking; P&H p. 556
const int BLOCKSIZE = 32;

void do_block(int n, int si, int sj, int sk, double *A, double *B, double *C) {
    for (int i=si; i<si+BLOCKSIZE; i+=UNROLL*4)
        for (int j=sj; j<sj+BLOCKSIZE; j++) {
            __m256d c[4];
            for (int x=0; x<UNROLL; x++)
                c[x] = _mm256_load_pd(C+i+x*4+j*n);
            for (int k=sk; k<sk+BLOCKSIZE; k++) {
                __m256d b = _mm256_broadcast_sd(B+k+j*n);
                for (int x=0; x<UNROLL; x++)
                    c[x] = _mm256_add_pd(c[x],
                                        _mm256_mul_pd(_mm256_load_pd(A+n*k+x*4+i), b));
            }
            for (int x=0; x<UNROLL; x++)
                _mm256_store_pd(C+i+x*4+j*n, c[x]);
        }
}

void dgemm_block(int n, double* A, double* B, double* C) {
    for (int sj=0; sj<n; sj+=BLOCKSIZE)
        for (int si=0; si<n; si+=BLOCKSIZE)
            for (int sk=0; sk<n; sk += BLOCKSIZE)
                do_block(n, si, sj, sk, A, B, C);
}
```
Performance

<table>
<thead>
<tr>
<th>N</th>
<th>scalar</th>
<th>avx</th>
<th>unroll</th>
<th>blocking</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>1.30</td>
<td>4.56</td>
<td>12.95</td>
<td>13.80</td>
</tr>
<tr>
<td>160</td>
<td>1.30</td>
<td>5.47</td>
<td>19.70</td>
<td>21.79</td>
</tr>
<tr>
<td>480</td>
<td>1.32</td>
<td>5.27</td>
<td>14.50</td>
<td>20.17</td>
</tr>
<tr>
<td>960</td>
<td>0.91</td>
<td>3.64</td>
<td>6.91</td>
<td>15.82</td>
</tr>
</tbody>
</table>
Agenda

• 61C – the big picture
• Parallel processing
• Single instruction, multiple data
• SIMD matrix multiplication
• Amdahl’s law
• Loop unrolling
• Memory access strategy - blocking
• And in Conclusion, …
And in Conclusion, …

- Approaches to Parallelism
 - SISD, SIMD, MIMD (next lecture)

- SIMD
 - One instruction operates on multiple operands simultaneously

- Example: matrix multiplication
 - Floating point heavy -> exploit Moore’s law to make fast