1 Pre-Check

This section is designed as a conceptual check for you to determine if you conceptually understand and have any misconceptions about this topic. Please answer true/false to the following questions, and include an explanation:

1.1 Simplifying boolean logic expressions has no effect on the performance of the hardware implementation.

False. Different gate arrangements that implement the same logic can have different propagation delays, which can affect the allowable clock speed.

1.2 The fewer gates the faster the circuit (assuming they all have the same delay).

False. Propagation delays add with the depth of the circuit, so a wide circuit with more gates can have less delay than just a few gates arranged in sequence.

1.3 It is allowed for clock-to-q plus the setup time to be greater than one clock cycle.

False. This can result in instability if flip flops are connected to each other.
2 Boolean Logic

In digital electronics, it is often important to get certain outputs based on your inputs, as laid out by a truth table. Truth tables map directly to Boolean expressions, and Boolean expressions map directly to logic gates. However, in order to minimize the number of logic gates needed to implement a circuit, it is often useful to simplify long Boolean expressions.

We can simplify expressions using the nine key laws of Boolean algebra:

<table>
<thead>
<tr>
<th>Name</th>
<th>AND Form</th>
<th>OR form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutative</td>
<td>AB = BA</td>
<td>A + B = B + A</td>
</tr>
<tr>
<td>Associative</td>
<td>AB(C) = A(BC)</td>
<td>A + (B + C) = (A + B) + C</td>
</tr>
<tr>
<td>Identity</td>
<td>1A = A</td>
<td>0 + A = A</td>
</tr>
<tr>
<td>Null</td>
<td>0A = 0</td>
<td>1 + A = 1</td>
</tr>
<tr>
<td>Absorption</td>
<td>A(A + B) = A</td>
<td>A + AB = A</td>
</tr>
<tr>
<td>Distributive</td>
<td>(A + B)(A + C) = A + BC</td>
<td>A(B + C) = AB + AC</td>
</tr>
<tr>
<td>Idempotent</td>
<td>A(A) = A</td>
<td>A + A = A</td>
</tr>
<tr>
<td>Inverse</td>
<td>A(\overline{A}) = 0</td>
<td>A + \overline{A} = 1</td>
</tr>
<tr>
<td>De Morgan’s</td>
<td>\overline{ABC} = \overline{A} + \overline{B}</td>
<td>\overline{A + B} = \overline{A(B)}</td>
</tr>
</tbody>
</table>

2.1 Use multiple iterations of De Morgan’s laws to prove the identity \(\overline{A + AB} = \overline{A} + B \).

\[
\begin{align*}
\overline{A + AB} &= \overline{AAB} \\
&= \overline{A(A + B)} \\
&= \overline{AA + AB} \\
&= \overline{AB} \\
&= \overline{A} + B
\end{align*}
\]

2.2 Simplify the following Boolean expressions:

(a) \((A + B)(A + \overline{B})C\)

\[
\begin{align*}
(A + B)(A + \overline{B})C &= (A + BB)C \\
&= AC
\end{align*}
\]

(b) \(\overline{A}BC + \overline{A}BC + ABC + A\overline{B}C + ABC + A\overline{B}C\)

\[
\begin{align*}
\overline{A}C(B + B) + AC(B + B) + AC(B + B) &= \overline{A}C + A\overline{C} + AC \\
&= \overline{A}C + A\overline{C} + A\overline{C} + AC \\
&= (\overline{A} + A)\overline{C} + A(\overline{C} + C) \\
&= \overline{C} + A
\end{align*}
\]
Alternatively, using the identity from 2.1:

\[
\overline{A\bar{C}(\bar{B} + B)} + AC(B + \bar{B}) + AC(B + \bar{B}) = \overline{A\bar{C} + A\bar{C} + AC}
= \overline{\bar{C}(A + A) + AC}
= \overline{\bar{C} + AC}
= \overline{\bar{C} + A}
\]

(c) \(\overline{A(BC + BC)}\)

\[
\overline{A(BC + BC)} = \overline{A + BC + BC}
= \overline{A + BC + BC}
= \overline{A + (B + C)(\bar{B} + \bar{C})}
= \overline{A + B\bar{C} + \bar{B}C}
\]

(d) \(\overline{A(A + B) + (B + AA)(A + \bar{B})}\)

\[
\overline{A(A + B) + (B + AA)(A + \bar{B})} = \overline{(A + B) + (A + B)(A + \bar{B})}
= \overline{AB + (B + A)(A + \bar{B})}
= \overline{AB + (BA + AA + B\bar{B})}
= \overline{AB + (BA + A + A\bar{B})}
= \overline{AB + A}
= \overline{A + B}
\]

Alternatively,

\[
\overline{A(A + B) + (B + AA)(A + \bar{B})} = \overline{A(A + B) + (A + B)(A + \bar{B})}
= (A + B)(\overline{A + A + \bar{B}})
= A + B
\]

3 Logic Gates

3.1 Label the following logic gates:

\[\text{NOT, AND, OR, XOR, NAND, NOR, XNOR} \]

3.2 Convert the following to boolean expressions on input signals A and B:

(a) NAND

\[\overline{AB + AB + AB} \]

Or, using the Product of Sums rule: \(\overline{A + \bar{B}}\)
(b) **XOR**

\[\overline{AB} + AB \]

(c) **XNOR**

\[\overline{\overline{A} + \overline{B}} + \overline{A} \overline{B} \]

Create an AND gate using only NAND gates.

4 State Intro

There are two basic types of circuits: combinational logic circuits and state elements. **Combinational logic** circuits simply change based on their inputs after whatever propagation delay is associated with them. For example, if an AND gate (pictured below) has an associated propagation delay of 2ps, its output will change based on its input as follows:

You should notice that the output of this AND gate always changes 2ps after its inputs change.

State elements, on the other hand, can remember their inputs even after the inputs change. State elements change value based on a clock signal. A rising edge-triggered register, for example, samples its input at the rising edge of the clock (when the clock signal goes from 0 to 1).

Like logic gates, registers also have a delay associated with them before their output will reflect the input that was sampled. This is called the clk-to-q delay. (“Q” often indicates output). This is the time between the rising edge of the clock signal and the time the register’s output reflects the input change.

The input to the register samples has to be stable for a certain amount of time around the rising edge of the clock for the input to be sampled accurately. The amount of time before the rising edge the input must be stable is called the **setup** time, and the time after the rising edge the input must be stable is called the **hold** time. Hold time is generally included in clk-to-q delay, so clk-to-q time will usually be greater than or equal to hold time. Logically, the fact that clk-to-q \(\geq \) hold time makes sense since it only takes clk-to-q seconds to copy the value over, so there’s no need to have the value fed into the register for any longer.
For the following register circuit, assume setup of 2.5ps, hold time of 1.5ps, and a clk-to-q time of 1.5ps. The clock signal has a period of 13ps.

You’ll notice that the value of the output in the diagram above doesn’t change immediately after the rising edge of the clock. Until enough time has passed for the output to reflect the input, the value held by the output is garbage; this is represented by the shaded gray part of the output graph. Clock cycle time must be small enough that inputs to registers don’t change within the hold time and large enough to account for clk-to-q times, setup times, and combinational logic delays.

For the following 2 circuits, fill out the timing diagram. The clock period (rising edge to rising edge) is 8ps. For every register, clk-to-q delay is 2ps, setup time is 4ps, and hold time is 2ps. NOT gates have a 2ps propagation delay.
In the circuit below, RegA and RegB have setup, hold, and clk-to-q times of 4ns, all logic gates have a delay of 5ns, and RegC has a setup time of 6ns. What is the maximum allowable hold time for RegC? What is the minimum acceptable clock cycle time for this circuit, and clock frequency does it correspond to?

The maximum allowable hold time for RegC is how long it takes for RegC’s input to change, so (clk-to-q of A or B) + shortest CL time = 4 + (5 + 5) = 14 ns.

The minimum acceptable clock cycle time is clk-to-q + longest CL time + setup time = 4 + (5 + 5 + 5) + 6 = 25 ns.

25 ns corresponds to a clock frequency of \(\frac{1}{(25 \times 10^{-9})} \) s\(^{-1} = 40 MHz \)