
CS 61C Caches, AMAT
Spring 2024 Discussion 11

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 We cannot use a 1KB cache in a 32-bit system because it’s too small and cannot

contain all possible addresses.

False. The purpose of the cache is not to hold every possible piece of memory at

the same time, but rather to hold some parts of it only, so a 1KB cache is not ”too

small”.

1.2 If a piece of data is both in the cache and in memory, reading it from cache is faster

than reading from memory.

True. The cache is smaller and faster than memory.

1.3 Caches see an immediate improvement in memory access time at program execution.

False. A cache starts off ’cold’, and required loading in values in blocks at first

directly from memory, forcing compulsory misses. This can be somewhat alleviated

by the use of a hardware prefetcher, that uses the current pattern of misses to predict

and prefetch data that may be accessed later on.

1.4 Increasing cache size by adding more blocks always improves (increases) hit rate for

all programs.

False. Whether this improves the hit rate for a given program depends on the

characteristics of the program. As an example, it is possible for a program that only

consists of a loop that runs through an array once to have each access be separated

by more than one block (say, the block size is 8B, but we have an integer array and

accessing every fourth element, so our access are separated by 16B). This makes

every miss a compulsory miss, and there is no way for us to reduce the number of

compulsory misses just by adding more blocks to our cache.

1.5 Decreasing block size to increase the number of blocks held by the cache improves

the program speed for all programs.

False. This question is similar to the one above, in that the answer to it depends

on the program that is running. If we have a program with a for loop that loops

through continuous memory (like an array), having a bigger blocks size and fewer

blocks might be helpful, as the single blocks will holds more continuous data. For

example, lets say cache A has 10 lines and a block size of 8 bytes, while cache B

has 20 lines with a a block size of 4 bytes and the array we loop through has 80



2 Caches, AMAT

characters. Cache A in this case will have 10 cache misses and 70 hits, while Cache

B will have 20 misses and 60 hits.

2 Understanding T/I/O
We use caches to make our access to data faster. When working with main memory

(RAM), the main problem faced is the fact that access to the main memory is very

slow. In fact, modern processors take about 100 instructions cycles or more to access

the main memory, meaning memory accesses become the bottleneck of our programs.

Caches help fix this problem for us - they hold a portion of the data in main memory,

that we might access again later on. They are closer to the processor in the memory

hierarchy, and thus accessing a cache is much faster than accessing the main memory.

As seen above, the access to cache is the middle step between the CPU asking for a

memory bit, and the actual main memory access - if the data is not found in the

cache, only then is main memory accessed. This way unnecessary trips to main

memory are avoided. One important detail is that caches are much smaller in size

than main memory - this is why we have to be efficient in what we hold in caches.

When we are saving data in caches, we need to be as efficient as possible. In order to

do this, we make use of locality. We have two different kinds of locality to consider.

• Temporal Locality: If we have accessed a piece of information recently, it is

possible that we will access it again. So, we hold this data in the cache.

• Spatial Locality: If we have accessed a memory location recently, it is

probable that we will access the neighbouring addresses as well. So, we also

keep the neighbouring addresses within the cache. An example is array accesses

- if we access the 0th element of an array, it is probable we will also access the

1st one.

Note that caches hold the data in blocks that have a size equal to the block size of

the cache.



Caches, AMAT 3

When working with caches, we have to be able to break down the memory addresses

we work with to understand where they fit into our caches. There are three fields:

• Tag - Used to distinguish different blocks that use the same index. Number of

bits: (# of bits in memory address) - Index Bits - Offset Bits

• Index - The set that this piece of memory will be placed in. Number of bits:

log2(# of indices)

• Offset - The location of the byte in the block. Number of bits: log2(size of

block)

Given these definitions, the following is true:

log2(memory size) = # memory address bits = # tag bits+# index bits+# offset bits

Another useful equality to remember is:

cache size = block size ∗ num blocks

One thing to consider when calculating index, offset, and tag bits is their order

within an address:

Tag Index Offset

As seen above, the tag bits are to the left (most significant), the index bits are in

the middle, and the offset bits are the to the right (least significant).

2.1 Assume we have a direct-mapped byte-addressed cache with capacity 32B and block

size of 8B. Of the 32 bits in each address, which bits do we use to find the tag, index,

and offset of the cache?

We can start by finding which bits correspond to the offset bits. The number of

offset bits is just dependent on the block size, so since our blocks are size 8B, we

need log2(8) = 3 bits to differentiate the 8 bytes in the block, so we have 3 offset bits.

In this case, the offset is the 3 least significant bits. Denoting the most significant

bit (MSB, on the left) as it 31 and the least significant bit (LSB, on the right) as bit

0, our offset bits are bits 0, 1, and 2.

We can determine the number of index bits we need from the number of sets our

cache has. Since our cache is direct-mapped, the number of sets is the same as the

number of blocks, so we just need to figure out how many blocks our cache has. We

see that num blocks = cache size/block size, so our cache has 32/8 = 4 blocks. We

need log2(4) = 2 bits to differentiate the 4 blocks, so we have 2 index bits.

From out T:I:O breakdown, we can see that the offset bits are the least significant

bits and the next set of least significant bits is the index bits. We calculated that



4 Caches, AMAT

there were 3 offset bits, so our index bits will start at bit 3 (remember the least

significant bit is bit 0!). Since we have 2 index bits, this means that we can find the

index bits at bits 3 and 4.

From our T:I:O breakdown, we can see that the tag bits are the most significant

bits. Our tag is the remainder most-significant bits, so we can find our tag bits at

bits 5-31.

2.2 Assume that we have the same cache scheme as the previous part (direct-mapped

byte-addressed cache with capacity 32B and block size of 8B). Classify each of the

following byte memory accesses as a cache hit (H), cache miss (M), or cache miss

with replacement (R). Tip: Drawing out the cache can help you see the replacements

more clearly.

Address T/I/O Hit, Miss, Replace

0x00000004

0x00000005

0x00000068

0x000000C8

0x00000068

0x000000DD

0x00000045

0x000000CF

0x000000F3

(Feel free to use the space below to draw your cache.)

Ignore miss types (compulsory/conflict/capacity) until Q4.

0x00000004 Tag 0, Index 0, Offset 4: M, Compulsory

0x00000005 Tag 0, Index 0, Offset 5: H

0x00000068 Tag 3, Index 1, Offset 0: M, Compulsory

0x000000C8 Tag 6, Index 1, Offset 0: R, Compulsory

0x00000068 Tag 3, Index 1, Offset 0: R, Conflict

0x000000DD Tag 6, Index 3, Offset 5: M, Compulsory

0x00000045 Tag 2, Index 0, Offset 5: R, Compulsory

0x000000CF Tag 6, Index 1, Offset 7: R, Conflict

0x000000F3 Tag 7, Index 2, Offset 3: M, Compulsory

Note that the M and R distinction here is for student understanding, and that the

cache doesn’t behave differently for these cases.

3 The 3 C’s of Cache Misses
In order to evaluate cache performance and hit rate, especially with determining

how effective our current cache structure is, it is useful to analyze the misses that do

occur, and adjust accordingly. Below, we categorize cache misses into three types:

• Compulsory: A miss that must occur when you bring in a certain block for

a first time, hence ”compulsory”. Compulsory misses occur when a program is

first started, and the cache does not contain any of that program’s data.



Caches, AMAT 5

• Conflict: A miss that occurs if the block was fetched before and in our cache,

but was evicted while the cache was not full. Increasing the associativity of

the cache may help avoid conflict misses.

• Capacity: A miss that occurs if the block was fetched before and in our

cache, but evicted while the cache was full. Capacity misses may be resolved

by increasing the size of the cache.

3.1 True or False: Fully associative caches can never have conflict misses.

Fully associative caches are designed such that any block of data can be stored in

any cache line. Doing so eliminates the possibility of conflict misses, which happens

when multiple data blocks compete for the same cache line, seen in direct-mapped

or set-associative caches.

3.2 Go back to question 2 and classify each miss (M) and replacement (R) as one of the

3 types of misses described above.

See solutions for Q3!

4 Code Analysis
Given the follow chunk of code, analyze the hit rate given that we have a byte-

addressed computer with a total memory of 1 MiB. It also features a 16 KiB

Direct-Mapped cache with 1 KiB blocks. Assume that your cache begins cold.

#define NUM_INTS 8192 // 2ˆ13

int A[NUM_INTS]; // A lives at 0x10000

int i, total = 0;

for (i = 0; i < NUM_INTS; i += 128) {

A[i] = i; // Line 1

}

for (i = 0; i < NUM_INTS; i += 128) {

total += A[i]; // Line 2

}

4.1 How many bits make up a memory address on this computer?

We take log2(1 MiB) = log2(2
20) = 20.

4.2 What is the T:I:O breakdown?

Offset = log2(1 KiB = log2(2
10) = 10

Index = log2(
16 KiB
1 KiB ) = log2(16) = 4

Tag = 20− 4− 10 = 6

4.3 Calculate the cache hit rate for the line marked Line 1:

The integer accesses are 4 ∗ 128 = 512 bytes apart, which means there are 2 accesses

per block. The first accesses in each block is a compulsory cache miss, but the

second is a hit because A[i] and A[i+128] are in the same cache block. Thus, we

end up with a hit rate of 50%.

4.4 Calculate the cache hit rate for the line marked Line 2:



6 Caches, AMAT

The size of A is 8192 ∗ 4 = 215 bytes. This is exactly twice the size of our cache. At

the end of Line 1, we have the second half of A inside our cache, but Line 2 starts

with the first half of A. Thus, we cannot reuse any of the cache data brought in

from Line 1 and must start from the beginning. Thus our hit rate is the same as

Line 1 since we access memory in the same exact way as Line 1. We don’t have to

consider cache hits for total, as the compiler will most likely store it in a register.

Thus, we end up with a hit rate of 50%.

5 Cache Performance
Recall that AMAT stands for Average Memory Access Time. The main formula for

it is:
AMAT = Hit Time +Miss Rate ∗Miss Penalty

In a multi-level cache structure, we can separate miss rates into two types that we

consider for each level.

• Global: Calculated as the number of accesses that missed at that level divided

by the total number of accesses to the cache system.

• Local: Calculated as the number of accesses that missed at that level divided

by the total number of accesses to that cache level.

5.1 In a 2-level cache system, after 100 total accesses to the cache system, we find that

the L2$ (L2 cache) ended up missing 20 times. What is the global miss rate of L2$?

20
100 = 20%

5.2 Given the system from the previous subpart, if L1$ had a local miss rate of 50%,

what is the local miss rate of L2$?

20
50%∗100 = 20

50 = 40%. We know that L2$ is accessed when L1$ misses, so if L1$
misses 50% of the time, that means we access L2$ 50 times, of which we ended up

having 20 misses in L2$.

Suppose your system consists of:

1. An L1$ that has a hit time of 2 cycles and has a local miss rate of 20%

2. An L2$ that has a hit time of 15 cycles and has a global miss rate of 5%

3. Main memory where accesses take 100 cycles

5.3 What is the local miss rate of L2$?

The number of accesses to the L2$ is the number of misses in L1$, so we divide the

global miss rate of L2$ with the miss rate of L1$.

L2$ Local miss rate = Misses In L2$
Accesses in L2$=

Misses in L2$
Total Accesses/

Misses in L1$
Total Accesses =

Global Miss Rate
L1$ Miss Rate = 5%

20% = 0.25 = 25%

5.4 What is the AMAT of the system?

AMAT = 2 + 20% x (15 + 25% x 100) = 10 cycles, as the Miss Penalty of the L1$
is the ’local’ AMAT of the L2$.



Caches, AMAT 7

Using global rates of each level, alternatively, AMAT = 2 + 20% x 15 + 5% x 100

= 10 cycles (using global miss rates)

5.5 Suppose we want to reduce the AMAT of the system to 8 cycles or lower by adding

in a L3$. If the L3$ has a local miss rate of 30%, what is the largest hit time that

the L3$ can have?

Let H = hit time of the cache. Extending the AMAT equation so that the Miss

Penalty of the L2$ is the ’local’ AMAT of the L3$, we can write:

2 + 20% ∗ (15 + 25% ∗ (H + 30% ∗ 100)) ≤ 8

Solving for H, we find that H ≤ 30. So the largest hit time is 30 cycles.


	Pre-Check
	Understanding T/I/O
	The 3 C's of Cache Misses
	Code Analysis
	Cache Performance

