
CS61C C and Number Representation
Spring 2025 Discussion 1

1 Precheck: Number Representation
1.1 Depending on the context, the same sequence of bits may represent different

things.

True. The same bits can be interpreted in many different ways with the exact
same bits! The bits can represent anything from an unsigned number to a signed
number or even, as we will cover later, a program. It is all dependent on its agreed
upon interpretation.

1.2 It is possible to get an overflow error in Two’s Complement when adding
numbers of opposite signs.

False. Overflow errors only occur when the correct result of the addition falls
outside the range of [−(2{𝑛−1}), 2{𝑛−1} − 1]. Adding numbers of opposite signs
will not result in numbers outside of this range.

1.3 If you interpret a N bit Two’s complement number as an unsigned number,
negative numbers would be smaller than positive numbers.

False. In Two’s Complement, the MSB is always 1 for a negative number. This
means EVERY negative number in Two’s Complement, when converted to
unsigned, will be larger than the positive numbers.

1.4 If you interpret an N bit Bias notation number as an unsigned number (assume
there are negative numbers for the given bias), negative numbers would be
smaller than positive numbers.

True. In bias notation, we add a bias to the unsigned interpretation to create
the value. Regardless of where we ‘shift’ the range of representable values, the
negative numbers, when converted to unsigned, will always stay smaller than
the positive numbers. This is unlike Two’s Complement (see description above).

1.5 We can represent fractions and decimals in our given number representation
formats (unsigned, biased, and Two’s Complement).

False. Our current representation formats has a major limitation; we can only
represent and do arithmetic with integers. To successfully represent fractional
values as well as numbers with extremely high magnitude beyond our current
boundaries, we need another representation format.

1



2 C and Number Representation

2 Unsigned and Signed Integers
2.1 Convert the following numbers from their initial radix into the other two

common radices:
(a) 0b10010011

Decimal: 147, Hex: 0x93
(b) 0

Binary: 0b0, Hex: 0x0
(c) 437

Binary: 0b110110101, Hex: 0x1B5
(d) 0x0123

Binary: 0b100100011, Decimal: 291

2.2 Convert the following numbers from hex to binary:

(a) 0xD3AD

0b1101001110101101
(b) 0x7EC4

0b0111111011000100

2.3 Assuming an 8-bit integer and a bias of −127 where applicable, what is the largest
integer for each of the following representations? What is the result of adding
one to that number?
(a) Unsigned

Largest: 255, Largest + 1: 0
(b) Biased

Largest: 128, Largest + 1: -127
(c) Two’s Complement

Largest: 127, Largest + 1: -128

2.4 How would you represent the numbers 0, 1, and −1? Express your answer in
binary and a bias of −127 where applicable.
(a) Unsigned

0: 0b0000 0000, 1: 0b0000 0001, −1: N/A
(b) Biased

0: 0b0111 1111, 1: 0b1000 0000, −1: 0b0111 1110

2



C and Number Representation 3

(c) Two’s Complement

0: 0b0000 0000, 1: 0b0000 0001, −1: 0b1111 1111

2.5 How would you represent the numbers 17 and −17? Express your answer in
binary and a bias of −127 where applicable.
(a) Unsigned

17: 0b0001 0001, −17: N/A

(b) Biased

17: 0b0110 1110, −17: 0b1010 0000

(c) Two’s Complement

17: 0b0001 0001, −17: 0b1110 1111

2.6 What is the largest integer that can be represented by any encoding scheme that
only uses 8 bits?

There is no such integer. For example, an arbitrary 8-bit mapping could choose
to represent the numbers from 1 to 256 instead of 0 to 255.

2.7 Prove that that 𝑥 + 𝑥 + 1 = 0, where 𝑥 is obtained by inverting the bits of 𝑥 in
binary.

Consider what happens when we perform 𝑥 + 𝑥. In each “place”, we either have
that 𝑥 has a 0 bit in that place, meaning that 𝑥 has a 1 bit in that place, or
vice versa. In either case, adding 0b1+ 0b0 = 0b1, meaning that regardless of
the value of 𝑥, 𝑥 + 𝑥 = 0b111...111. Adding 1 to this then causes overflow,
resulting in 0.

2.8 (Optional) Prove that the 𝑛-bit two’s complement numeral 𝑑𝑛−1𝑑𝑛−2 ⋯𝑑0 repre-
sents the number −2𝑛−1𝑑𝑛−1 +∑𝑛−2

𝑖=0 2𝑖𝑑𝑖, using your result from Question 2.7.

When the MSB is 0, the number is the same as if it was read as an unsigned
number. Now, consider the case when the MSB is 1. The easiest way is to consider
what the value of 0b10...00 should be. For ease of example, let’s consider a
concrete bit-width of 4 bits: 0b1000. The number that when added to this makes
0b10000 (five bits in total so overflow creates a value of zero) is 0b0111 +
0b0001, which has a value of 22 + 21 + 20 + 21 = 23. Thus, the MSB has a value
of −23. Generalizing this, we see that the MSB has the value 2𝑛−1 in general.

3



4 C and Number Representation

3 Arithmetic and Counting
3.1 Compute the decimal result of the following arithmetic expressions involving 6-

bit Two’s Complement numbers as they would be calculated on a computer. Do
any of these result in an overflow? Are all these operations possible?

(a) 0b011001 - 0b000111

0b010010 = 18, No overflow.
(b) 0b100011 + 0b111010

Adding together we get 0b1011101, however since we are working with 6-bit
numbers we truncate the first digit to get 0b011101 = 29. Since we added
two negative numbers and ended up with a positive number, this results in an
overflow.

(c) 0x3B + 0x06

Converting to binary, we get 0b111011 + 0b000110 = (after truncating as the
problem states we’re working with 6-bit numbers) 0b000001 = 1. Despite the
extra truncated bit, this is not an overflow as −5 + 6 indeed equals 1!

(d) 0xFF - 0xAA

Trick question! This is not possible, as these hex numbers would need 8 bits to
represent and we are working with 6 bit numbers.

(e) 0b000100 - 0b001000

The 2′s complement of 0b001000 is 0b110111 + 1 = 0b111000. We add that
to 0b000100 to get 0b111100.

We can logically fact check this by converting everything to decimals: 0b000100
is 4 and 0b001000 is 8, so the subtraction should result in −4, which is 0b111100.

3.2 How many distinct numbers can the following schemes represent? How many
distinct positive numbers?

(a) 10-bit unsigned

1024, 1023. In unsigned representation, different bit-strings correspond to differ-
ent numbers, so 10 bits can represent 2{10} = 1024 distinct numbers. Out of all
of these, only the number 0 is non-positive, so we can represent 1023 distinct
positive numbers.

(b) 8-bit Two’s Complement

256, 127. Like unsigned, different bit-strings correspond to distinct numbers in
Two’s Complement, so 8 bits can represent 28 = 256 numbers. Out of these, half
of them have a MSB of 1, which are negative numbers, and one is the number
zero, so we can represent 2562 − 1 = 127 distinct positive numbers.

(c) 6-bit biased, with a bias of −30

4



C and Number Representation 5

64, 33. Also like unsigned, in biased notation, no two different bit-strings corre-
spond to the same number, so 6 bits can represent 26 = 64 numbers. With this
bias, the largest number we can represent is 0b111111= 63 − 30 = 33, and the
smallest is −30, so there are 33 distinct positive numbers (1 – 33).

(d) 10-bit sign-magnitude

1023, 511. Two different bit-strings (0b0000000000 and 0b1000000000) corre-
spond to the same number zero, so we can represent only 2{10} − 1 = 1023
distinct numbers. Out of these, every bit-string with a MSB of 0, except
0b0000000000, correspond to a different positive number, so we can represent
29 − 1 = 511 distinct positive numbers.

4 Precheck: Introduction to C
4.1 The correct way of declaring a character array is char[] array.

False. The correct way is char array[].

4.2 True or False: C is a pass-by-value language.

True. If you want to pass a reference to anything, you should use a pointer.

4.3 In compiled languages, the compile time is generally pretty fast, however the
run-time is significantly slower than interpreted languages.

False. Reasonable compilation time, excellent run-time performance. It optimizes
for a given processor type and operating system.

4.4 What is a pointer? What does it have in common with an array variable?

As we like to say, “everything is just bits.” A pointer is just a sequence of bits,
interpreted as a memory address. An array acts like a pointer to the first element
in the allocated memory for that array. However, an array name is not a variable,
that is, &arr = arr whereas &ptr != ptr unless some magic happens (what does
that mean?).

4.5 If you try to dereference a variable that is not a pointer, what will happen? What
about when you free one?

It will treat that variable’s underlying bits as if they were a pointer and attempt
to access the data there. C will allow you to do almost anything you want, though
if you attempt to access an “illegal” memory address, it will segfault for reasons
we will learn later in the course. It’s why C is not considered “memory safe”:
you can shoot yourself in the foot if you’re not careful. If you free a variable
that either has been freed before or was not malloced/calloced/realloced, bad
things happen. The behavior is undefined and terminates execution, resulting in
an “invalid free” error.

5



6 C and Number Representation

4.6 Memory sectors are defined by the hardware, and cannot be altered.

False. The four major memory sectors, stack, heap, static/data, and text/code for
any given process (application) are defined by the operating system and may
differ depending on what kind of memory is needed for it to run.

What’s an example of a process that might need significant stack space, but very
little text, static, and heap space? (Almost any basic deep recursive scheme, since
you’re making many new function calls on top of each other without closing the
previous ones, and thus, stack frames.)

What’s an example of a text and static heavy process? (Perhaps a process that
is incredibly complicated but has efficient stack usage and does not dynamically
allocate memory.)

What’s an example of a heap-heavy process? (Maybe if you’re using a lot of
dynamic memory that the user attempts to access.)

5 Pass-by-Who?
5.1 The following functions may contain logic or syntax errors. Find and correct

them.

(a) Returns the sum of all the elements in summands.

It is necessary to pass a size alongside the pointer.

1 int sum(int* summands, size_t n) {
2     int sum = 0;
3     for (int i = 0; i < n; i++)
4         sum += *(summands + i);
5     return sum;
6 }

(b) Increments all of the letters in the string which is stored at the front of
an array of arbitrary length, n <= strlen(string). Does not modify any
other parts of the array’s memory.

The ends of strings are denoted by the null terminator rather than 𝑛. Simply
having space for 𝑛 characters in the array does not mean the string stored inside
is also of length 𝑛.

1 void increment(char* string) {
2     for (i = 0; string[i] != 0; i++)
3         string[i]++; // or (*(string + i))++;
4 }

Another common bug to watch out for is the corner case that occurs when
incrementing the character with the value 0xFF. Adding 1 to 0xFF will overflow
back to 0, producing a null terminator and unintentionally shortening the string.

6



C and Number Representation 7

(c) Overwrites an input string src with “61C is awesome!” if there’s room. Does
nothing if there is not. Assume that length correctly represents the length
of src.

char *srcptr, replaceptr initializes a char pointer, and a char—not two
char pointers.

The correct initialization should be, char *srcptr, *replaceptr.

5.2 Implement the following functions so that they work as described.

(a) Swap the value of two ints. Remain swapped after returning from this
function. Hint: Our answer is around three lines long.

1 void swap(int *x, int *y) {
2     int temp = *x;
3     *x = *y;
4     *y = temp;
5 }

(b) Return the number of bytes in a string. Do not use strlen. Hint: Our answer
is around 5 lines long.

1 int mystrlen(char* str) {
2     int count = 0;
3     while (*str != 0) {
4         str++;
5         count++;
6     }
7     return count;
8 }

7


	Precheck: Number Representation
	Unsigned and Signed Integers
	Arithmetic and Counting
	Precheck: Introduction to C
	Pass-by-Who?

