
CS61C Precheck: C
Spring 2025 Discussion 2

1 Precheck: Introduction to C
1.1 The correct way of declaring a character array is char[] array.

1.2 True or False: C is a pass-by-value language.

1.3 In compiled languages, the compile time is generally pretty fast, however the
run-time is significantly slower than interpreted languages.

1.4 What is a pointer? What does it have in common with an array variable?

1.5 If you try to dereference a variable that is not a pointer, what will happen? What
about when you free one?

1.6 Memory sectors are defined by the hardware, and cannot be altered.

1



2 Precheck: C

2 Memory Management
C does not automatically handle memory for you. In each program, an address
space is set aside, separated into 2 dynamically changing regions and 2 ‘static’
regions.

• The Stack: local variables inside of functions, where data is garbage immedi-
ately after the function in which it was defined returns. Each function call creates
a stack frame with its own arguments and local variables. The stack dynami-
cally changes, growing downwards as multiple functions are called within each
other (LIFO structure), and collapsing upwards as functions finish execution
and return.

• The Heap: memory manually allocated by the programmer with malloc,
calloc, or realloc. Used for data we want to persist beyond function calls,
growing upwards to ‘meet’ the stack. Careful heap management is necessary
to avoid Heisenbugs! Memory is freed only when the programmer explicitly
frees it!

• Static data: global variables declared outside of functions, does not grow or
shrink through function execution.

• Code (or Text): loaded at the start of the program and does not change after,
contains executable instructions and any pre-processor macros.

There are a number of functions in C that can be used to dynamically allocate
memory on the heap. The following are the ones we use in this class:

• malloc(size_t size) allocates a block of size bytes and returns the start
of the block. The time it takes to search for a block is generally not dependent
on size.

• calloc(size_t count, size_t size) allocates a block of count * size
bytes, sets every value in the block to zero, then returns the start of the
block.

• realloc(void *ptr, size_t size) “resizes” a previously-allocated block
of memory to size bytes, returning the start of the resized block.

• free(void *ptr) deallocates a block of memory which starts at ptr that was
previously allocated by the three previous functions.

2



Precheck: C 3

3 Endianness
• Machines are byte-addressable. Memory is like a large array of cells. Each

storage cell stores 8 bits, and these byte cells are ordered with an address.
• A 32b architecture has 32-bit memory addresses, addresses 0x00000000 -

0xFFFFFFFF

Typed variables:
• Examples: int, long, char
• sizeof(dataType) indicates the number of bytes in memory required to store

a particular data type

Pointers:
• A pointer is a variable whose value is an address of another variable
• Declaration: dataType* name;
• Dereference operator: Based on the pointer declaration statement, the compiler

fetches the corresponding amount of bytes. For example, if p is a pointer to a
4-byte integer variable x, then *p involves fetching 4 bytes starting from the
address of x, which is the value of p. Therefore, the value of x and the value of
*p are equal.

Endianness:
• Recall different data types are stored in a certain number of contiguous byte

cells in memory
• Big endian: the most significant byte of the value of a variable is stored in

memory at the lowest address of the chunk of byte cells allocated for that
variable

• Little endian: the least significant byte of the value of a variable is stored in
memory at the lowest address of the chunk of byte cells allocated for the
variable

3



4 Precheck: C

3.1 Fill in the memory contents for each system after initializing arr. Assume arr
begins at memory address 0x1000.

uint32_t arr[2] = {0xD3ADB33F, 0x61C0FFEE};

(a) Little-Endian System

+3 +2 +1 +0
…

0x1000
0x1004

…

(b) Big-Endian System

+3 +2 +1 +0
…

0x1000
0x1004

…

4


	Precheck: Introduction to C
	Memory Management
	Endianness

