C561C C Memory Management
Spl‘ing 2025 Discussion 2

| Memory Management

For each part, choose one or more of the following memory segments where the
data could be located: code, static, heap, stack

a) Local variables

b) Global variables

c) Constants (constant variables or values)

d) Functions (i.e. Machine Instructions)

e) Results of Dynamic Memory Allocation (malloc or calloc)

f) String Literals

2 C Memory Management

Write the code necessary to allocate memory on the heap in the following
scenarios:

(a) An array of arr of k integers
(b) A string str of length p. Note that a string’s length is defined by strlen
(c) Ann x mmatrix mat of integers initialized to zero.

(d) Deallocate all but the first 5 values in an integer array arr. (Assume arr has
more than 5 values).

int xarr = ... ;

Compare the following two implementations of a function which duplicates a
string. Is either implementation correct?

1 char* strdupl(charx s) {

2 int n = strlen(s);

3 char* new_str = malloc((n + 1) * sizeof(char));
4 for (int i = 0; i < n; i++) new_str[i] = s[i];
5 return new_str;

6

char* strdup2(charx* s) {
int n = strlen(s);
char* new_str = calloc(n + 1, sizeof(char));
for (int i = 0; i < n; i++) new_str[i] = s[i];
return new_str;

o O W

C Memory Management 3

2 Pass—lay—Who?

The following functions may contain logic or syntax errors. Find and correct

them.

(a) Returns the sum of all the elements in summands.

1

D O W N

(b)

W N

(c)

Overwrites an input string src with “61C is awesome

int sum(int *summands) {

int sum = O;

for (int i = 0; i < sizeof(summands); i++)
sum += *(summands + i);

return sum;

Increments all of the letters in the string which is stored at the front of
an array of arbitrary length,n >= strlen(string). Does not modify any
other parts of the array’s memory.

void increment(char *string, int n) {

for (int i = 0; i < n; i++)
*x(string + i)++;

1»

if there’s room. Does

nothing if there is not. Assume that length correctly represents the length
of src.

void cs6lc(char *src, size_t length) {

char *srcptr, replaceptr;
char replacement[16] = "61C is awesome!";
srcptr = src;
replaceptr = replacement;
if (length >= 16) {
for (int i = 0; i < 16; i++)
*srcptr++ = *replaceptr++;

4 C Memory Management

Implement the following functions so that they work as described.

(a) Swap the value of two ints. Remain swapped after returning from this
function. Hint: Our answer is around three lines long.

1 void swap(________________ » e) {

}
(b) Return the number of bytes in a string. Do not use strlen. Hint: Our answer
is around 5 lines long.

1 int mystrlen(________________) {

C Memory Management 5

3 Endianness

Suppose we run the following code on a 32b architecture:

1 uint32_t nums[2] = {10, 20};
2 uint32_t *q = (uint32_t *) nums;
3 uint32_t **xp = &q;

Find the values located in memory at the byte cells for both a Big Endian and a
Little Endian system given that:

+ the array nums starts at address 0x36432100

+ p’s address is 0x10000000

Little Endian Big Endian
OxFFFFFFFF .. OxFFFFFFFF
0x36432107 0x36432107
0x36432100 0x36432100
0x20000003 0x20000003
0x20000000 0x20000000
0x10000003 0x20 0x10000003 0x00

0x00 0x00
0x00 0x00
0x10000000 0x00 0x10000000 0x20

6 C Memory Management

Suppose we add an an additional instruction (line #4) to the end of the previous

code block:
1 uint32_t nums[2] = {10, 20};
2 uint32_t *q = (uint32_t *) nums;
3 uint32_t **p = &q;
4 uint64_t *y = (uint64_t *) nums;

Provide answers for the following questions for both a Big Endian system and
Little Endian system:

1) What does *y evaluate to?

2) What does &q evaluate to?

3) What does &nums evaluate to?

4) What does *(q + 1) evaluate to?

C Memory Management 7

4 (O Generics

True or False: In C, it is possible to directly dereference a void * pointer, e.g.

. = *ptr;

Generic functions (i.e., generics) in C use void * pointers to operate on memory
without the restriction of types. Generic pointers do not support dereferencing,
as the number of bytes to access from memory is not known at compile-time.
They instead use byte handling functions such as memcpy and memmove.

Implement rotate, which will prompt the following program to generate the
provided output.

1 int main(int argc, char *argv[]) {

2 int array[i10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
3 print_int_array(array, 10);

4 rotate(array, array + 5, array + 10);

5 print_int_array(array, 10);

6 rotate(array, array + 1, array + 10);

7 print_int_array(array, 10);

8 rotate(array + 4, array + 5, array + 6);
9 print_int_array(array, 10);

10 return O;

11 %

Output:

1 $./rotate

Array: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
Array: [6, 7, 8, 9, 10, 1, 2, 3, 4, 5]
Array: [7, 8, 9, 10, 1, 2, 3, 4, 5, 6]
Array: [7, 8, 9, 10, 2, 1, 3, 4, 5, 6]

g W N

Your Solution:

1 void rotate(void *front, void *separator, void *end) {

	Memory Management
	Pass-by-Who?
	Endianness
	C Generics

