
CS61C C Memory Management
Spring 2025 Discussion 2

1 Memory Management
1.1 For each part, choose one or more of the following memory segments where the

data could be located: code, static, heap, stack

a) Local variables

b) Global variables

c) Constants (constant variables or values)

d) Functions (i.e. Machine Instructions)

e) Results of Dynamic Memory Allocation (malloc or calloc)

f) String Literals

1

2 C Memory Management

1.2 Write the code necessary to allocate memory on the heap in the following
scenarios:

(a) An array of arr of k integers

(b) A string str of length p. Note that a string’s length is defined by strlen

(c) An n × m matrix mat of integers initialized to zero.

(d) Deallocate all but the first 5 values in an integer array arr. (Assume arr has
more than 5 values).

int *arr = ... ;

1.3 Compare the following two implementations of a function which duplicates a
string. Is either implementation correct?

1 char* strdup1(char* s) {
2 int n = strlen(s);
3 char* new_str = malloc((n + 1) * sizeof(char));
4 for (int i = 0; i < n; i++) new_str[i] = s[i];
5 return new_str;
6 }

1 char* strdup2(char* s) {
2 int n = strlen(s);
3 char* new_str = calloc(n + 1, sizeof(char));
4 for (int i = 0; i < n; i++) new_str[i] = s[i];
5 return new_str;
6 }

2

C Memory Management 3

2 Pass-by-Who?
2.1 The following functions may contain logic or syntax errors. Find and correct

them.

(a) Returns the sum of all the elements in summands.

1 int sum(int *summands) {
2 int sum = 0;
3 for (int i = 0; i < sizeof(summands); i++)
4 sum += *(summands + i);
5 return sum;
6 }

(b) Increments all of the letters in the string which is stored at the front of
an array of arbitrary length, n >= strlen(string). Does not modify any
other parts of the array’s memory.

1 void increment(char *string, int n) {
2 for (int i = 0; i < n; i++)
3 *(string + i)++;
4 }

(c) Overwrites an input string src with “61C is awesome!” if there’s room. Does
nothing if there is not. Assume that length correctly represents the length
of src.

1 void cs61c(char *src, size_t length) {
2 char *srcptr, replaceptr;
3 char replacement[16] = "61C is awesome!";
4 srcptr = src;
5 replaceptr = replacement;
6 if (length >= 16) {
7 for (int i = 0; i < 16; i++)
8 *srcptr++ = *replaceptr++;
9 }
10 }

3

4 C Memory Management

2.2 Implement the following functions so that they work as described.

(a) Swap the value of two ints. Remain swapped after returning from this
function. Hint: Our answer is around three lines long.

1 void swap(________________, ________________) {

}
(b) Return the number of bytes in a string. Do not use strlen. Hint: Our answer

is around 5 lines long.

1 int mystrlen(________________) {

}

4

C Memory Management 5

3 Endianness
3.1 Suppose we run the following code on a 32b architecture:

1 uint32_t nums[2] = {10, 20};
2 uint32_t *q = (uint32_t *) nums;
3 uint32_t **p = &q;

Find the values located in memory at the byte cells for both a Big Endian and a
Little Endian system given that:
• the array nums starts at address 0x36432100
• p’s address is 0x10000000

Little Endian Big Endian

0xFFFFFFFF ...
0x36432107

0x36432100
...

0x20000003

0x20000000
...

0x10000003 0x20
0x00
0x00

0x10000000 0x00
...

0xFFFFFFFF ...
0x36432107

0x36432100
...

0x20000003

0x20000000
...

0x10000003 0x00
0x00
0x00

0x10000000 0x20
...

5

6 C Memory Management

3.2 Suppose we add an an additional instruction (line #4) to the end of the previous
code block:

1 uint32_t nums[2] = {10, 20};
2 uint32_t *q = (uint32_t *) nums;
3 uint32_t **p = &q;
4 uint64_t *y = (uint64_t *) nums;

Provide answers for the following questions for both a Big Endian system and
Little Endian system:

1) What does *y evaluate to?

2) What does &q evaluate to?

3) What does &nums evaluate to?

4) What does *(q + 1) evaluate to?

6

C Memory Management 7

4 C Generics
4.1 True or False: In C, it is possible to directly dereference a void * pointer, e.g.

... = *ptr;

4.2 Generic functions (i.e., generics) in C use void * pointers to operate on memory
without the restriction of types. Generic pointers do not support dereferencing,
as the number of bytes to access from memory is not known at compile-time.
They instead use byte handling functions such as memcpy and memmove.

Implement rotate, which will prompt the following program to generate the
provided output.

1 int main(int argc, char *argv[]) {
2 int array[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
3 print_int_array(array, 10);
4 rotate(array, array + 5, array + 10);
5 print_int_array(array, 10);
6 rotate(array, array + 1, array + 10);
7 print_int_array(array, 10);
8 rotate(array + 4, array + 5, array + 6);
9 print_int_array(array, 10);
10 return 0;
11 }

Output:

1 $./rotate
2 Array: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
3 Array: [6, 7, 8, 9, 10, 1, 2, 3, 4, 5]
4 Array: [7, 8, 9, 10, 1, 2, 3, 4, 5, 6]
5 Array: [7, 8, 9, 10, 2, 1, 3, 4, 5, 6]

Your Solution:

1 void rotate(void *front, void *separator, void *end) {

blank

blank

blank

}

7

	Memory Management
	Pass-by-Who?
	Endianness
	C Generics

