
CS61C Precheck: Floating Point, RISC-V
Spring 2025 Discussion 3

1 Discussion Pre-Check
1.1 The idea of floating point is to use the ability to move the radix (decimal) point

wherever to represent a large range of real numbers as exact as possible.

True. Floating point:
• Provides support for a wide range of values. (Both very small and very large)
• Helps programmers deal with errors in real arithmetic because floating point

can represent +∞, -∞, NaN (Not a Number)
• Keeps high precision. Recall that precision is a count of the number of bits in a

computer word used to represent a value. IEEE 754 allocates a majority of bits
for the significand, allowing for the use of a combination of negative powers
of two to represent fractions.

1.2 Floating Point and Two’s Complement can represent the same total amount of
numbers (any reals, integer, etc.) given the same number of bits.

False. Floating Point can represent infinities as well as NaNs, so the total amount
of representable numbers is lower than Two’s Complement, where every bit
combination maps to a unique integer value.

1.3 The distance between floating point numbers increases as the absolute value of
the numbers increase.

True. The uneven spacing is due to the exponent representation of floating point
numbers. There are a fixed number of bits in the significand. In IEEE 32-bit
storage there are 23 bits for the significand, which means the LSB represents
2^{-23} times 2 to the exponent. For example, if the exponent is zero (after
allowing for the offset) the difference between two neighboring floats will be
2^{-23}. If the exponent is 8, the difference between two neighboring floats
will be 2^{-15} because the mantissa is multiplied by 2^{8}. Limited precision
makes binary floating-point numbers discontinuous; there are gaps between
them.

1.4 Floating Point addition is associative.

False. Because of rounding errors, you can find Big and Small numbers such that:
(Small + Big) + Big != Small + (Big + Big)

FP approximates results because it only has 23 bits for the significand.

1.5 Let a0 point to the start of an array x. lw s0, 4(a0) will always load x[1]
into s0.

1

2 Precheck: Floating Point, RISC-V

False. This only holds for data types that are four bytes wide, like int or float.
For data-types like char that are only one byte wide, 4(a0) is too large of an
offset to return the element at index 1, and will instead return a char further
down the array (or some other data beyond the array, depending on the array
length).

1.6 Assuming no compiler or operating system protections, it is possible to have the
code jump to data stored at 0(a0) (offset 0 from the value in register a0) and
execute instructions from there.

True. If your compiler/OS allows it (some do not, for security reasons), it is pos-
sible for your code to jump to and execute instructions passed into the program
via an array. Conversely, it’s also possible for your code to treat itself as normal
data (search up self-modifying code if you want to see more details).

1.7 jalr is a shorthand expression for a jal that jumps to the specified label and
does not store a return address anywhere.

False. jalr is used to return to the memory address specified in the second
argument. Keep in mind that jal jumps to a label (which is translated into an
immediate by the assembler), whereas jalr jumps to an address stored in a
register, which is set at runtime. Related, j label is a pseudo-instruction for
jal x0, label (they do the same thing).

2 Floating Point
The IEEE 754 standard defines a binary representation for floating point values
using three fields.

• The sign determines the sign of the number (0 for positive, 1 for negative).
• The exponent is in biased notation. For instance, the bias is −127, which comes

from -(2{8−1} − 1) for single-precision floating point numbers.
• The significand (or mantissa) is akin to unsigned integers but used to store a

fraction instead of an integer and refers to the bits to the right of the leading
“1” when normalized. For example, the significand of 1.010011 is 010011.

The table below shows the bit breakdown for the single-precision (32-bit) repre-
sentation. The leftmost bit is the MSB, and the rightmost bit is the LSB.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mantissa / Significand / Fraction

Mantissa field

Exponent

Exponent field, stored as an 8-bit biased number
00000000 = Denormalized number
11111111 = NaN (nonzero mantissa) or Infinity (zero mantissa)

S

Sign bit
0 = Positive
1 = Negative

2

Precheck: Floating Point, RISC-V 3

For normalized floats:

Value = (−1)Sign × 2Exp+Bias × 1.Significand2)

For denormalized floats:

Value = (−1)Sign × 2Exp+Bias+1 × 0.Significand2)

Exponent (Pre-bias) Significand Meaning
0 Anything Denorm

1-254 Anything Normal
255 0 ± Infinity
255 Nonzero NaN

Note that in the above table, our exponent has values from 0 to 255. When
translating between binary and decimal floating point values, we must remember
that there is a bias for the exponent.

3 RISC-V Instructions
RISC-V is an assembly language composed of simple instructions that each
perform a single task such as addition of two numbers or storing data to memory.
Below is a comparison between RISC-V code and its equivalent C code:

// x in s0, &y in s1
addi s0, x0, 5 int x = 5;
sw s0, 0(s1) y[0] = x;
mul t0, s0, s0
sw t0, 4(s1) y[1] = x * x;

For your reference, here are some of the basic instructions for arithmetic/bitwise
operations and memory access, which can also be found on the 61C Reference
Card.

The below are abbreviations that will be used in the table:
• rs1: Argument register 1
• rs2: Argument register 2
• rd: Destination register
• imm: Immediate value (integer literal constant)
• R[register]: Value contained in register
• inst: One of the instructions in the table

Register-to-register operations (R-type): inst rd rs1 rs2
add Adds R[rs1] and R[rs2] and stores the result in rd
xor Exclusive ORs R[rs1] and R[rs2] and stores the result in rd
mul Multiplies R[rs1] by R[rs2] and stores the result in rd

3

https://cs61c.org/sp25/pdfs/resources/reference-card.pdf
https://cs61c.org/sp25/pdfs/resources/reference-card.pdf

4 Precheck: Floating Point, RISC-V

Register-to-register operations (R-type): inst rd rs1 rs2
sll Logical left shifts R[rs1] by R[rs2] and stores the result in rd
srl Logical right shifts R[rs1] by R[rs2] and stores the result in rd
sra Arithmetic right shifts R[rs1] by R[rs2] and stores the result in rd

slt(u) If R[rs1] < R[rs2], puts 1 in rd, else puts 0 (u compares unsigned)

Memory operations
sw rs2 rs1(imm) Stores R[rs2] to the address R[rs1] + imm in memory
lw rd rs1(imm) Loads address R[rs1] + imm from memory into rs2

Branch operations (B-type): inst rs1 rs2 label
bne If rs1 != rs2, jump to label
beq If rs1 == rs2, jump to label

Jump operations (J-type): inst rd label
jal Stores the next instruction’s address into rd and jumps to label

A RISC-V “immediate” is any numeric constant. For example, addi t0, t0, 20,
sw a4, -8(sp), and lw a1, 0x44(t2) have immediates 20, -8, and 0x44
respectively. Note that the size (maximum number of bits) of an immediate in any
given instruction depends on what type of instruction it is (more on this soon!).

You may also see that there is an “i” at the end of certain instructions, such
as addi, slli, etc. This means that rs2 becomes an “immediate” or an integer
instead of using a register. There are immediates in instructions which use an
offset such as sw and lw. When coding in RISC-V, use the 61C reference card for
the details of each instruction (the reference card is your friend)!

4

	Discussion Pre-Check
	Floating Point
	RISC-V Instructions

