
CS61C Precheck: RISC-V Calling Convention
Spring 2025 Discussion 4

1 Discussion Pre-Check
1.1 After calling a function and having that function return, the t registers may have

been changed during the execution of the function, while a registers cannot.

False. a0 and a1 registers are often used to store the return value from a function,
so the function can set their values to its return values before returning.

1.2 In order to use the saved registers (s0-s11) in a function, we must store their
values before using them and restore their values before returning.

True. The saved registers are callee-saved, so we must save and restore them at
the beginning and end of functions. This is frequently done in organized blocks
of code called the “function prologue” and “function epilogue.”

1.3 The stack should only be manipulated at the beginning and end of functions,
where the callee-saved registers are temporarily saved.

False. While it is a good idea to create a separate ‘prologue’ and ‘epilogue’ to save
callee registers onto the stack, the stack is mutable anywhere in the function.
A good example is if you want to preserve the current value of a temporary
register, you can decrement the sp to save the register onto the stack right before
a function call.

2 Calling Conventions
Let’s review what special meaning we assign to each type of register in RISC-V.

Register Convention Saver
x0 Stores zero N/A
sp Stores the stack pointer Callee
ra Stores the return address Caller

a0 - a7 Stores arguments and return values Caller
t0 - t6 Stores temporary values that do not persist after function

calls
Caller

s0 - s11 Stores saved values that persist after function calls Callee

To save and recall values in registers, we use the sw and lw instructions to save
and load words to and from memory, and we typically organize our functions as
follows:

1

2 Precheck: RISC-V Calling Convention

Prologue
addi sp, sp, -8 # Room for two registers. (Why?)
sw s0, 0(sp) # Save s0 (or any saved register)
sw s1, 4(sp) # Save s1 (or any saved register)

Code ommitted

Epilogue
lw s0, 0(sp) # Load s0 (or any saved register)
lw s1, 4(sp) # Load s1 (or any saved register)
addi sp, sp, 8 # Restore the stack pointer

3 Calling Conventions in Code Example
Below is an example of calling conventions in a RISC-V function.

The callee-saved registers (like s0) are saved at the start of the function and
restored before returning, as these registers must be preserved by the function.

The caller-saved registers (like t1 and ra) are saved by the caller before invoking
another function, as the callee can modify these registers. Note: Although ra is
a caller-saved register, it is usually saved at the very beginning and end of the
function by convention, as shown below.

func_a:
 # Prologue: Save callee-saved registers & the return address
 addi sp, sp, -8 # Allocate stack space
 sw ra, 0(sp) # Save return address
 sw s0, 4(sp) # Save s0

 addi t1, x0, 10 # Modify t1
 addi s0, x0, 20 # Modify s0

 # Save caller-saved registers before function call
 addi sp, sp, -4 # Allocate more stack space
 sw t1, 0(sp) # Save t1 (caller-saved register)

 call func_b # Call another function

 # Restore caller-saved registers after function call

2

Precheck: RISC-V Calling Convention 3

 lw t1, 0(sp) # Restore t1 (caller-saved register)
 addi sp, sp, 4 # Deallocate space for caller-saved

register

 addi t1, t1, 5 # Modify t1
 addi s0, s0, 5 # Modify s0

 # Epilogue: Restore callee-saved registers
 lw ra, 0(sp) # Restore return address
 lw s0, 4(sp) # Restore s0
 addi sp, sp, 8 # Deallocate stack space

 ret # Return from func_a

3

	Discussion Pre-Check
	Calling Conventions
	Calling Conventions in Code Example

