
CS61C RISC-V Calling Convention
Spring 2025 Discussion 4

1 Review: RISC-V Memory Access
Using the given instructions and the sample memory array, what will happen
when the RISC-V code is executed? For load instructions (lw, lb, lh), write
out what each register will store. For store instructions (sw, sh, sb), update the
memory array accordingly. Recall that RISC-V is little-endian and byte address-
able. For any unknown instructions, use the CS 61C reference card!

1.1
1 li t0 0x00FF0000
2 lw t1 0(t0)
3 addi t0 t0 4
4 lh t2 2(t0)
5 lw s0 0(t1)
6 lb s1 3(t2)

0xFFFFFFFF
...

0x00FF0004 0x000C561C
0x00FF0000 36

...
0x00000036 0xFDFDFDFD

...
0x00000024 0xDEADB33F

...
0x0000000C 0xC5161C00

...
0x00000000

What value does each register hold after the code is executed?

t0: 0x00FF0004. Line 3 adds 4 to the initial address.

t1: 36. Line 2 loads the 4-byte word from address 0x00FF0000.

t2: 0xC. Line 4 loads two bytes starting at the address 0x00FF0004 + 2 =
0x00FF0006. This returns 0x000C

s0: 0xDEADB33F. Line 5 loads the word starting at address 36 = 0x24 which
is 0xDEADB33F.

s1: 0xFFFFFFC5. Line 6 loads the MSB starting of the 4-byte word at address
0xC. The value is 0xC5 which is sign-extended to 0xFFFFFFC5.

1.2 Update the memory array with its new values after the code is executed. Assume
each byte in the memory array is initialized to zero.

1

https://cs61c.org/sp25/pdfs/resources/reference-card.pdf

2 RISC-V Calling Convention

1 li t0 0xABADCAF8
2 li t1 0xF9120504
3 li t2 0xBEEFDAB0
4 sw t0 0(t1)
5 addi t0 t0 4
6 sh t1 2(t0)
7 sh t2 0(t0)
8 lw t3 0(t1)
9 sb t1 1(t3)
10 sb t2 3(t3)

0xFFFFFFFF 0x00000000
...

0xF9120504 0xABADCAF8
...

0xABADCAFC 0x0504DAB0
0xABADCAF8 0xB0000400

...
0x00000000 0x00000000

2 RISC-V Calling Convention
2.1 Consider the following blocks of code:

1 main:
2 # Prologue
3 # Saves ra
4
5 # Code omitted
6 addi s0 x0 5
7 # Breakpoint 1
8 jal ra foo
9 # Breakpoint 3
10 mul a0 a0 s0
11 # Code omitted
12
13 # Epilogue
14 # Restores ra
15 j exit

1 foo:
2 # Prologue
3 # Saves s0
4
5 # Code Omitted
6 addi s0 x0 4
7 # Breakpoint 2
8
9 # Epilogue
10 # Restores s0
11 jr ra

a) Does main always behave as expected, as long as foo follows calling conven-
tion?

Yes, since `foo` saves the saved registers and `main` saves the return address.
b) What does s0 store at breakpoint 1? Breakpoint 2? Breakpoint 3?

Breakpoint 1: 5, Breakpoint 2: 4, Breakpoint 3: 5
c) Now suppose that foo didn’t have a prologue or epilogue. What would s0

store at each of the breakpoints? Would this cause errors in our code?

Breakpoint 1: 5, Breakpoint 2: 4, Breakpoint 3: 4. This would cause errors because
we rely on `s0` having the value of 5 in our calculations in `main`

In part (c) above, we see one way how not following calling convention could
make our code misbehave. Other things to watch out for are: assuming that a

2

RISC-V Calling Convention 3

or t registers will be the same after calling a function, and forgetting to save ra
before calling a function.

2.2 Function myfunc takes in two arguments: a0, a1. The return value is stored in
a0. In myfunc, generate_random is called. It takes in 0 arguments and stores
its return value in a0.

1 myfunc:
2 # Prologue (omitted)
3
4 addi t0 x0 1
5 slli t1 t0 2
6 add t1 a0 t1
7 add s0 a1 x0
8
9 jal generate_random
10
11 add t1 t1 a0
12 add a0 t1 s0
13
14 # Epilogue (omitted)
15 ret

a) Which registers, if any, need to be saved on the stack in the prologue?

Answer: s0, ra

We must save all s-registers we modify. In addition, if a function contains a
function call, register ra will be overwritten when the function is called (i.e. jal
ra label). ra must be saved before a function call. It is conventional to store
ra in the prologue (rather than just before calling a function) if the function
contains a function call. myfunc contains the function call generate_random.

b) Which registers, if any, need to be saved on the stack before calling
generate_random?

Answer: t1

Under calling conventions, all the t-registers and a-registers may be changed
by generate_random, so we must store all of these which we need to know
the value of after the call. A total of 2 t-registers are used before calling
generate_random, t0 and t1, but only t1’s value is referenced again after the
function call.

c) Which registers, if any, restored from the stack in the epilogue before
returning?

Answer: s0, ra

This mirrors what we did in the prologue.

3

4 RISC-V Calling Convention

3 Recursive Calling Convention
Write a function sum_squares in RISC-V that, when given an integer n and a
constant m, returns the summation below. If n is not positive, then the function
returns 0.

𝑚+ 𝑛2 + (𝑛 − 1)2 + (𝑛 − 2)2 +…+ 12

To implement this, we will use a tail-recursive algorithm that uses the a1 register
to help with recursion.

sum_squares_recursive: Return the value 𝑚+ 𝑛2 + (𝑛 − 1)2 +…+ 12

a0 A 32-bit number 𝑛. You may assume 𝑛 ≤ 10000.
Arguments

a1 A 32-bit number 𝑚.
Return
value a0

𝑚+ 𝑛2 + (𝑛 − 1)2 + (𝑛 − 2)2 +…+ 12. If 𝑛 ≤ 0, return
𝑚

For this problem, you are given a RISC-V function called square that takes in a
single integer and returns its square.

square: Squares a number
Arguments a0 𝑛
Return value a0 𝑛2

3.1 Since this a recursive function, let’s implement the base case of our recursion:

sum_squares:
 bge x0 a0 zero_case

 # To be implemented in the next question

zero_case:
 mv a0 a1
 jr ra

3.2 Next, implement the recursive logic. Hint: if you let 𝑚′ = 𝑚+ 𝑛2, then

𝑚+ 𝑛2 + (𝑛 − 1)2 +…+ 12 = 𝑚′ + (𝑛 − 1)2 +…+ 12

4

RISC-V Calling Convention 5

sum_squares:
 # Handle zero case (previous question)
 bge x0 a0 zero_case

 mv t0 a0
 jal ra square

 add a1 a0 a1
 addi a0 t0 -1

 jal ra sum_squares
 jr ra

zero_case:
 # Handle zero case (previous question)
 jr ra

3.3 Now, think about calling convention from the caller perspective. After the call
to square, what is in a0 and a1? Which one of the registers will cause a calling
convention violation?

a0 will contain 𝑛2, and a1 will contain garbage data, causing a calling convention
violation. The register t0 will also hold garbage, which would also cause a calling
convention violation.

3.4 What about the recursive call? What will be in a0 and a1 after the call to
sum_squares?

a0 will contain 𝑚+ 𝑛2 +…+ 12, and a1 will contain garbage data. However,
since a0 now contains the expected return value, we no longer care about the
value in a1, and can directly return. It is the job of whichever function called
sum_squares to deal with saving caller-saved registers if they are needed in the
future.

3.5 Now, go back and fix the calling convention issues you identified. Note that not
all blank lines may be used. There may also be another caller saved register that
you need to save as well!

5

6 RISC-V Calling Convention

sum_squares:
 # Handle zero case (previous question)
 mv t0 a0

 # Save caller saved registers on the stack
 addi sp sp -12
 sw a1 0(sp)
 sw t0 4(sp)
 sw ra 8(sp)
 jal ra square
 # Restore register and stack
 lw a1 0(sp)
 lw t0 4(sp)
 lw ra 8(sp)
 addi sp sp 12

 add a1 a0 a1
 addi a0 t0 -1

 # Save caller saved registers on the stack
 # Note that we don't need to save a1 and t0
 # because we do not need their values
 # after the function call.
 addi sp sp -4
 sw ra 0(sp)
 jal ra sum_squares
 # Restore caller saved registers on the stack
 lw 0(sp)
 addi sp sp 4

 jr ra

zero_case:
 # Handle zero case (previous question)
 jr ra

3.6 Now, from a callee perspective, do we have to save any registers in the prologue
and epilogue? If yes, what registers do we have to save, and where do we place
the prologue and epilogue? If no, briefly explain why.

No, we do not have to take callee saved registers into account because we do not
use any callee saved registers. However, since we call two functions, it is possible
to save ra in the prologue and restore it in an epilogue immediately before the
jr ra before the zero_case label.

6

	Review: RISC-V Memory Access
	RISC-V Calling Convention
	Recursive Calling Convention

