C561C Precheck: Inst. Trans., AMAT
Spring 2025 Discussion )

1 Discussion Pre-Check

True or False: In RISC-V, the opcode field of an instruction determines its type (R-Type, S-Type, etc.).

Answer: True.

The opcode field of an instruction uniquely identifies the instruction type and allows us to identify the
instruction format we’re working with.

Convert the following RISC-V registers into their binary representation:

s0: Looking at the 61C reference sheet, we can see that s0 refers to the x8 register. To get the final answer,
we convert 8 into binary: 0b01000.

Following the same procedure as above, we get the rest of the answers...
sp: x2 = 0b00010

x9:x9 = 0b01001

t4:x29 = 0b11101

True or False: In RISC-V, the instruction 11 x5 0x44331416 will always be encoded in 32 bits when
translated into binary.

Answer: False.

This is a bit of a trick question. It is true that every regular instruction in RISC-V will always be
encoded in 32-bits. However, li is actually a pseudo-instruction! Recall that pseudo-instructions can
translate into one or more RISC-V instructions. In this case, 1i will be translated into an addi and lui
instruction. Therefore, 1i x5 0x44331416 will actually be encoded in 64-bits, as it represents two
RISC-V instructions.

True or False: We can use a branch instruction to move the PC by one byte.

Answer: False

Branch instruction offsets have an implicit zero as the least significant bit, so we can only move the PC
in offsets divisible by 2 (refer back to Lecture 13 for an explanation why this is!).

The full offset for a branch instruction will be the 13-bit offset {imm[12:1], 03}, where we take the
immediate bits from our instruction’s binary encoding and add the implicit zero.



2 Precheck: Inst. Trans., AMAT

2 Instruction Translation

Recall that every instruction in RISC-V can be represented as a 32-bit binary value, which encodes the
type of instruction, as well as any registers/immediates included in the instruction. To convert a RISC-V
instruction to binary, and vice-versa, you can use the steps below. The 61C reference sheet will be very

useful for conversions!

RISC-V = Binary
(a) Identify the instruction type (R, L, I, S, B, U,
or]J)

(b) Find the corresponding instruction format

(c) Convert the registers and immediate value,
if applicable, into binary

(d) Arrange the binary bits according to the
instruction format, including the opcode bits

Binary = RISC-V

(a) Identify the instruction using the opcode
(and possibly funct3/funct7) bits

(b) Divide the binary representation into sec-
tions based on the instruction format

(c) Translate the registers + immediate value

(d) Put the final instruction together based on
instruction type/format

(and possibly funct3/funct7 bits)

Below is an example of a series of RISC-V instructions with their corresponding binary translations.

example.S example.bin

main:

. 11111111110000010000000100010011
addi sp,sp,-4

00000000000100010010000000100011

sSW ra,0(sp)
. 00000000010000010000010000010011
addi s0,sp,4
00000000000000000000010100010011
mv a0,ab

. 00000000010001000000000011101111
call printf

3 AMAT (Average Memory Access Time)

Recall that AMAT stands for Average Memory Access Time. This is a way to measure the performance of
a cache system. The formula for AMAT is:

AMAT = (Hit Time) + (Miss Rate) * (Miss Penalty)

In a multi-level memory hierarchies (e.g. multi-level caches), we can separate miss rates into two types
that we consider for each level.

+ Global: Calculated as the number of accesses that missed at that level divided by the total number of
accesses to the memory system.

+ Local: Calculated as the number of accesses that missed at that level divided by the total number of
accesses to that memory level.



	Discussion Pre-Check
	Instruction Translation
	AMAT (Average Memory Access Time)

