
CS61C Instruction Translation, AMAT
Spring 2025 Discussion 5

1 RISC-V Instruction Translation
1.1 In this question, translate the following RISC-V instructions into their binary and hexadecimal values.

a) addi s1 x0 -24 = 0b1111 1110 1000 0000 0000 0100 1001 0011
1.1

               = 0xFE800493
1.1

For this question, use the CS 61C reference card to obtain the information needed to convert each
instruction to its binary representation. One thing that helps is splitting the parsing into sections.

For question 1, reading pages 1 and 2 of the reference card we can find:

addi s1 x0 -24:
Instruction format: I-type
immediate (12 bits): -24 = 0b1111 1110 1000
opcode (7 bits): 0b001 0011
funct3 (3 bits): 0b000
rs1 (5 bits): x0 = 0b00000
rd (5 bits): s1 = x9 = 0b01001

I-type instructions have the format:

imm[11:0] | rs1 | funct3 | rd | opcode].

Combining the values for our addi instruction into the I-type format gives us: 0b1111 1110 1000
0000 0000 0100 1001 0011 = 0xFE800493
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b) sh s1 4(t1) =  0b0000 0000 1001 0011 0001 0010 0010 0011
1.1

            =  0x00931223
1.1

For the second question, following a similar method using the CS 61C reference card:

sh s1 4(t1):
Instruction format: S-type
rs1: s1 = t1 = 0b00110 
rs2: s1 = x9 = 0b01001
immediate: 4 = 0b0000 0000 0100
opcode: 0b010 0011
funct3: 0b001

Notice that S-type instructions are encoded as follows: [imm[11:5] | rs2 | rs1 | funct3 |
imm[4:0] | opcode]. imm[11:5] is bits 11-5 inclusive of the immediate, imm[4:0] is bits 4-0 of
the immediate, and so on.

Thus, assembling the S-type instruction: 0b0000 0000 1001 0011 0001 0010 0010 0011
= 0x00931223
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1.2 In this question, translate the following hexadecimal values into RISC-V instructions.

a) 0xFE05 0CE3  =  beq a0, x0, -8
1.2

0xFE05 0CE3 = 0b1111 1110 0000 0101 0000 1100 1110 0011

For the reverse conversion, we first need to determine the instruction type. To do so, we examine the
lower 7 bits instruction[6:0] as this will always be our opcode. Then, if necessary, we examine
funct3 / funct7 as necessary to narrow down specific instruction.

opcode = 0b110 0011 which is for a B-type instruction.

A B-type instruction has the fields: [imm[12|10:5] | rs2 | rs1 | funct3 | imm[4:1|
11] | opcode] (note: an expression like [imm[12|10:5] | ...] is equivalent to [imm[12] |
imm[10:5] | ...]).

We can pattern match as follows:

imm[12]: 0b1
imm[10:5]: 0b11 1111
rs2: 0b00000 = x0
rs1: 0b01010 = x10 = a0
funct3: 0b000
imm[4:1] = 0b1100
imm[11] = 0b1

With a B-type opcode and funct3 = 0b000 we know that this is a beq instruction.

Assembling the full immediate, we get the 13-bit branch immediate to be [imm[12] | imm[11] |
imm[10:5] | imm[4:1] | 0] = 0b1111 1111 1100 0. Notice that branch immediates have an
implicit zero (see following question for explanation why). Converting from binary to decimal (recall
immediates are in two’s complement) we get imm = -8.

Thus, we can assemble our instruction as 0x2345 5487 = beq a0, x0, -8
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b) 0x2345 54B7  =  lui s1 0x23455
1.2

0x2345 54B7 = 0b0010 0011 0100 0101 0101 0100 1011 0111

For the reverse conversion, we first need to determine the instruction type. To do so, we examine the
bits instruction[6:0] as this will always be our opcode. Then, if necessary, we would examine
funct3 / funct7 as necessary to narrow down instruction.

opcode = 0b011 0111 which is for a U-type instruction (specifically for lui).

A U-type lui instruction has the fields: imm[31:12] | rd | opcode, so we can pattern match as
follows:

lui rd immu
immu = Immediate[31:12] = 0b0010 0011 0100 0101 0101 
     = 0x23455
rd: 0b01001 = s1

To get the answer 0x2345 54B7 = lui s1 0x23455

1.3 Given the following RISC-V code and instruction addresses, translate the jal and bne instructions (you’ll
need your RISC-V reference sheet!) and determine the value of R[ra] during the execution of loop.

      loop:
0x002CFF00:     add t1, t2, t0        0x00538333

0x002CFF04:     jal ra, foo           0x028000EF
1.3

0x002CFF08:     bne t1, zero, loop    0xFE031CE3
1.3

                ...
      foo:

0x002CFF2C:     jr ra         R[ra] = 0x002CFF08
1.3

For the first jal instruction, we can find that rd = ra = 0b00001. To determine the immediate, we
need to move our PC to the first instruction starting at the label foo. 0x002CFF2C-0x002CFF04 =
0x00000028 = 40 in decimal. Thus, our 21-bit offset will be 0b0...00101000 which means our J-
type immediate will be imm[20:1] = 0b0...0010100 (recall the implicit 0). Reassembling the J-type
instruction format, we get 0x028000EF

For bne, we can decode the fields following the steps outlined in the previous questions. To find the B-
type immediate, we need to move the PC from 0x002CFF08 to 0x002CFF00 (the start of label loop)
which is PC-8 bytes away. Thus, we have an offset of -8 = 0b11...111000 which gives the immediate
imm[12:1] = 0b111111111100. Assembling the instruction, we get 0xFE031CE3.

R[ra] = 0x002CFF08 because the jal instruction sets the return address register to be PC + 4 so that
the callee can “return” to the caller by jumping back to the next instruction that should be executed.
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2 RISC-V Addressing
We have several addressing modes to access memory (immediate not listed):

a) Base displacement addressing adds an immediate to a register value to create a data memory address
(used for lw, lb, sw, sb).

b) PC-relative addressing uses the PC and adds the immediate value of the instruction to create an
instruction address (used by branch and jump instructions).

c) Register Addressing uses the value in a register as an instruction address. For instance, jalr, jr,
and ret, where jr and ret are just pseudoinstructions that get converted to jalr.

2.1 What is the range of 32-bit instructions that can be reached from the current PC using a single branch
instruction? Note that RISC-V branch instructions must support branching to 16-bit “compressed”
instructions (enabled via an optional RISC-V extension).

Let’s first figure out how many bytes we can move the PC.

The B-format instruction encoding has support for a 12-bit immediate field. Because RISC-V must
support 16-bit instructions, and our instructions will always be word-aligned (half-word for 16b instruc-
tions), the byte offset needed to branch to any instructions will always be divisible by 2. Thus, we assume
an implicit 0 at bit 0 of our immediate field, allowing a 13-bit offset (that’s why the reference sheet
describes the immediate as imm[12:1]!). It is signed, the branch immediate can move the PC a total
range of [−212, 212 − 2] bytes (recall last bit is always 0).

To find the range of 32-bit instructions we can reach from the current PC, we look for all byte offsets
we can reach that are divisible by 4. Thus, we have a range of [−210, 210 − 1] 32-bit instructions to
branch to.

For those curious: the RISC-V “RVC” extension can be enabled to compress many common instructions
to 16-bits.

2.2 What is the maximum range of 32-bit instructions that can be reached from the current PC using a jump
instruction?

The immediate field of the jal instruction is 20 bits, while that of the jalr instruction is only 12 bits,
so jal can reach a wider range of instructions. As with above, let’s first find the number of bytes we
can move the PC.

With a 20-bits of immediate (21 bits with implicit zero) for the jal instruction, we have a signed range
of [−220, 220 − 2] bytes. The number of 4-byte instructions will be the range of addresses divisible by 4,
so we can jump to reference within [−218, 218 − 1] instructions of the current PC.
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3 Caches Intro: AMAT
Recall that AMAT stands for Average Memory Access Time. The main formula for it is:

AMAT = Hit Time + Miss Rate ∗ Miss Penalty

3.1 Suppose your system takes 100ns to access main memory. We decide to add a cache with a measured hit
time of 25ns and miss rate of 25%. What is the average memory access time of the system?

Answer: 50ns

We are looking for a solution to the AMAT equation. The hit time for the new L1$ is 25ns. The miss
rate is 25% and the miss penalty will be the 100ns required to access main memory in the case of a
cache miss. Thus, our solution is AMAT = 25ns + 0.25 ∗ 100ns = 50ns. By adding a cache, we have
effectively halved the time spent waiting for memory accesses.

3.2 In a new 2-level cache system, after 100 total accesses to the cache system, we find that the L2$ (L2 Cache)
ended up missing 20 times. What is the global miss rate of L2$?

Answer: 20%

Global Miss Rate = Local Missed Accesses
Total System Accesses = 20

100 = 20%

3.3 Given the system from the previous subpart (100 total accesses, 20 L2$ misses), if L1$ had a local miss
rate of 50%, what is the local miss rate of L2$?

Answer: 40%

Local Miss Rate = Local Missed Accesses
Local Cache Accesses = 20

50%∗100 = 20
50 = 40%

We know that L2$ is accessed when L1$ misses, so if L1$ misses 50% of the time, that means we access
L2$ 50 times, of which we ended up having 20 misses in L2$.

For the following subparts, suppose we have a new system that consists of:
1. An L1$ that has a hit time of 2 cycles and a local miss rate of 20%
2. An L2$ that has a hit time of 15 cycles and has a global miss rate of 5%
3. Main memory where accesses take 100 cycles

EDIT 2/26: the original worksheet listed L2$ hit time as 16 cycles. The correct L2$ hit time is 15 cycles.

3.4 What is the local miss rate of L2$?

Answer: 25%

The number of accesses to the L2$ is the number of misses in L1$, so we divide the global miss rate of
L2$ with the miss rate of L1$.

L2$ Local Miss Rate = Misses in L2$
Accesses in L2 = Misses in L2$

Total Accesses/
Misses in L1$
Total Accesses = Global Miss Rate

L1$ Miss Rate = 5%
20% = 0.25 =

25%

3.5 What is the AMAT of the system?
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Answer: AMAT = 2 + 20% × (15 + 25% × 100) = 10 cycles

The miss penalty of the L1$ is the “local” AMAT of the L2$.

3.6 Suppose we want to reduce the AMAT of the system to 8 cycles or lower by adding in a L3$. If the L3$
has a local miss rate of 30%, what is the largest hit time that L3$ can have?

Answer: 30 cycles

Let 𝐻 = hit time of the cache. Extending the AMAT equation so that the Miss Penalty of the L2$ is the
“local” AMAT of the L3$, we can write:

AMAT = 2 + 20% ∗ (15 + 25% ∗ (𝐻 + 30% ∗ 100)) ≤ 8

Solving for 𝐻 , we find that 𝐻 ≤ 30. So, the largest hit time is 30 cycles.
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