CS6].C BOOlean A]gebra, CALL
Spring 2025 Discussion 7

1 Boolean Logic

Simplify the following Boolean expressions:
(@ (A+B)(A+B)C=-AC

A breakdown of the boolean algebra laws used to simplify the expression is shown

below:

(A+B)(A+B)C=(AA+AB+AB +BB)C Distributive Property
= (A + AB + O) C Idempotent & Inverse Properties
= (A + AE) C Identity Property
= A(l + E) C Distributive Property
=AC Null Property

(b) ABC+ABC+ABC

+AC+ AC Distributive
=AC+AC+AC+ AC Idempotent
— (K +A)C+ A(a + C) Distributive
=C+A Inverse

Alternatively, to simplify A C 4+ AC + AC with the distributive property z 4 yz =
(z+y)-(z+2):

K6+A€+A0:6@+Aywm

=(C+A)(C+C) Distributive (AND form)

~C+A

(©) A(EC+BC) -A+BC+BC

2 Boolean Algebra, CALL

A(EE—FBC) =A+BC+BC De Morgan's
= A+ @W De Morgan's
=A+(B+0) (E + 6) De Morgan's
= A +BC+BC Distributive

(d) A(A+B)+(B+AA)(A+B)=A+B

A(A+B)+(B+AA)(A+B) =A(A+B)+(A+B)(A+B) Idempotent

= (A +B) (K T A+ E) Distributive

= (A+B)(1+B)
= (A +B)

2 Digital Logic Simplification
For the following digital logic circuits:

1. Write a boolean algebra expression that corresponds the physical circuit.
2. Simplify the expression and draw the simplified circuit.

A}——{:{r——
B}—{>0—

func

Inverse

Null

Boolean Algebra, CALL 3

We can start by labeling the inputs / outputs of each of our logic gates. The first two gates
after the A and B inputs are NOT gates which output A and B respectively. These are fed as
inputs to the AND gate which will output A - B. Lastly, this is fed into NOT gate which is
our output expression F(A, B) = A - B. We can simplify this expression with De Morgan’s
law to get a simplified expression:

Redrawing our simplified circuit, we get:

D {func

Which is just an OR gate. As extra practice, you can verify the simplification by writing
truth tables for each expressions and verifying that they match.

Da
)

=] 2]

func

L

4 Boolean Algebra, CALL

Following similar logic as above, can write expressions for the inputs and outputs of each
of the logic gates. The first NAND gate has inputs A and A for an output of A - A (“not A
and A”) and similarly for the second NAND gate. Lastly, the outputs are fed into an AND
gate and can be simplified:

func

Additionally, A - B is equivalent to a NOR gate and can be redrawn as:

D —
~a

Note that this demonstrates how NOT gates can be formed by feeding the same input to
both inputs of a NAND gate. In fact, all boolean algebra circuits can be formed only using
NAND gates (think about why this may be the case?).

L

—
{func

ERYRN
I

B)
5 -

Boolean Algebra, CALL 5

We can label the outputs of each gate in the circuit. In the first layer, we two AND gates for
AB and AB. The final AND gate takes AB as its first input and C as its second input for a

combined output of ABC. Lastly, an OR gate combines the previous gates with the input B
for the final function of F(A, B, C) = AB + ABC + B

Following the procedures in question 1, we can use boolean algebra to simplify the equation:

AB+ABC+ B = (A+KC+1)B
-B

Thus, we can redraw the circuit as simply:

Why might it be useful to simplify logic circuits?

Complex digital circuits can be simplified to minimize different objectives such as area
or cost. In practice, computers use sophisticated algorithms to optimize circuits for many
factors including area, cost, and timing requirements (which will be explored in future
week’s discussions).

3 Combinational Logic from Truth Tables

For this question, we have a single 3-bit input and a single 4-bit output. We want to design a
combinational logic circuit to achieve the desired output given the appropriate combinations
of input bits (Input=001 => Output=0011, and so on...). Here is the truth table we wish to

implement:
Input | Out
000 0001
001 0011
010 1111
011-111 | xxxX

The x’s for the final entry of the table indicate that any output is valid for the case that Input
is 011, 100, 101, 110, and 111

Write out and simplify boolean expressions for each of the output bits Out [3], 0Out[2],
Out[1], and Out [0] in terms of the input bits In[2], In[1], In[O0].

6 Boolean Algebra, CALL

When deriving expressions for multi-bit values, we find split up the values and find expres-
sions for the individual bits.

Working from right-to-left starting with Out [0], we see that its value is one in all cases
which are defined. We can set it to the expression Out [0] =

For Out[1], we see that it is 1 whenever Input=001, Input=010, or for one of
the undefined input cases. We can write translate this to an expression as Out[l] =

In[2] In[1] In[0] + In[2] In[1] In[0]. We can also introduce input terms from the undefined
cases to help with simplification, namely Input=101 and Input=110 to get:

Out[1] = In[2] In[1] In[0] + In[2] In[1] In[0] In[1] In[0]

JIn
= In[2] In[1] In[0] + In[2] In[1] In[0]
— Tn([1] In[0] + Tn[1] In[0]

We can also introduce the undefined terms Input=011 and Input=111 then we end up
with the simplification:

Out[1] = In[1] In[0] + In[1] In[0] + In[2] In[1] In[0] 4+ In[2] In[1] In[O]
T (0] + In[1] In[0] + In[1] In[0]
Inf1] + In[0]
Following a similar process as above, the final two bits simplify to Out[3] = O0Out[2]
= In[1].

Draw out the boolean circuit based on your simplified expressions above. You may use
constants 0 and 1, and the logic gates AND, OR, NOT.

Boolean Algebra, CALL 7

{Out_3

{Out_2

{0 ut 1

{Out_0

4 TWO—P&SS Assem]oly

Consider the following assembly code. Assume that printf exists in the C standard library
and that msg exists at an unknown address in the .data section.

Address | Assembly

data | msg: .string "Hello World"
|

text |

0x0C | add tO, x0, xO0

0x10 | addi t1, x0, 4

0x14 | loop: beq tO, t1, end

0x18 | addi a0, a0, 1

0x1C I la a0, msg // load address of “msg’

0X20 | jal ra, printf

0X24 | n: addi tO, tO, 1

0X28 | j loop

0X2C | end: ret

This code is output from the Compiler and may contain pseudoinstructions.

The compiler is responsible for translating high-level language code (e.g. C) to assembly. The
compiler’s output may contain pseudoinstructions which gets translated by the assembler.

8 Boolean Algebra, CALL

Assume we are using a two-pass assembler. Fill out the symbol table after the first pass (top-
to-bottom) of the assembler. Not all lines may be used.

Symbol Table
Label Address
msg ?
loop 0Ox14
n 0x24
end 0x2C

The assembler performs two passes over the program to compute all the offsets. Branches
and PC-relative jumps that target labels with positive offsets are unknown in the first pass
(ex: during the assembler’s first pass, it encounters the label end in beq t0, t1, end
before it has seen the address of end).

The solution is to take two passes over the program. Pass 1 remembers the positions of labels
which are stored in the symbol table, and pass 2 uses label positions to generate the machine
code. References to static data and external functions cannot be determined at this stage,
however, because full 32-bit addresses are unknown until the linker creates the executable.

For the first pass of the assembler:

(a) msg is defined in the data section and will be static data with an absolute address. Thus,
it’s address will be unknown until the linker stage. msg will be defined in the symbol
table and passed to the relocation table.

(b) loop is defined at address 0x14 and is defined in the symbol table.

(c) nis defined at address 0x24 and is defined in the symbol table.

(d) Lastly, the assembler encounters end defined at 0x2C which is then defined in the
symbol table.

After the first pass of the assembler, which of the instructions do not have their addresses
fully resolved?

Answer:

(a) beq t0, t1, end
(b) 1a a0, msg

(c) jal ra, printf

At the end of the first-pass, all instructions with forward references (positive PC-relative
offsets) are still unknown. This is the case for beq t0, t1, end. Additionally, any absolute
addresses or links to external library functions are unknown and cannot be translated until
the linker stage (jal ra, printf and la a0, msg).

Boolean Algebra, CALL 9

After the second pass of the assembler but before the linker, which of the instructions do not
have their addresses fully resolved?

Answer: jal ra, printf and la a0, msg

The address of the label end is known in the symbol table at the end of the assembler’s first

pass. On the second pass, the address is resolved and the instruction can be translated to
machine code.

printf is an external library function whose address is unknown and is determined by the
linker. Additionally, msg will be stored as absolute address (not PC-relative) at an address
determined by the linker, and thus 1a a0, msg cannot be translated at this stage.

	Boolean Logic
	Digital Logic Simplification
	Combinational Logic from Truth Tables
	Two-Pass Assembly

