
CS61C Pipelining, Hazards
Spring 2025 Discussion 9

1 Review: Single-Cycle Datapath
1.1 True or False? The single cycle datapath uses the outputs of all hardware units for each

instruction.

False. All units are active in each cycle, but their output may be ignored (gated) by control
signals.

1.2 True or False? It is possible to execute the stages of the single-cycle datapath in parallel to speed
up execution of a single instruction.

False. Each stage depends on the value produced by the stage before it (e.g., instruction decode
depends on the instruction fetched). We can execute the stages in parallel if we insert registers
to pipeline the stages.

1.3 Fill out the following table with the control signals for each instruction based on the single-cycle
datapath on the last page.
• If the value of the signal does not affect the execution of an instruction, use the * (don’t care)

symbol to indicate this.
• For ALUSel, write the ALU operation (add, or, sll, …)

BrEq BrLT PC-
Sel

Imm-
Sel BrUn ASel BSel ALUSel MemRW Reg-

WEn
WB-
Sel

xor * * 0 * * 0
(Reg)

0
(Reg) xor 0 1 1

(ALU)

lb * * 0 I * 0
(Reg) 1 (Imm) add 0 1 0 (MEM)

jalr * * 1 (ALU) I * 0
(rs1) 1 (Imm) add 0 1 2 (PC

+ 4)

For this exercise, the times for each circuit element is given as follows:

Register clk-to-q 30 ps Branch comp. 75 ps DMEM write setup 200 ps
Register setup 20 ps ALU 200 ps Memory read 250 ps
Register hold 10 ps Imm. Gen. 15 ps Mux 25 ps
RegFile read 100 ps RegFile setup 20 ps

1.4 How long does it take to execute each instruction? Refer to the single-cycle datapath on the last
page of the worksheet.

1

2 Pipelining, Hazards

(a) ori

ori = clk-to-Q + IMEM Read + Regfile Read + Mux(ASel) + ALU + Mux(PCSel) + PCSetup
= 30 ps + 250 ps + 100 ps + 25 ps + 200 ps + 25 ps + 20 ps
= 650 ps

Note that we take the maximum of the path from IMEM->Regfile->Mux->ALU and IMEM-
>ImmGen->Mux->ALU. With this hardware configuration, the longest path is through the
Register file + ASel Mux.

(b) lh

lh = clk-to-Q + IMEM Read + max(RegFile Read + Mux(ASel), ImmGen + Mux(BSel))
+ ALU + Mem-Read + Mux(WBSel) + RegFileSetup

= 30 ps + 250 ps + 60 ps + max(100 ps + 25 ps, 15 ps + 20 ps) + 200 ps + 250 ps + 25 ps + 20 ps
= 30 ps + 250 ps + 60 ps + 125 ps + 200 ps + 250 ps + 25 ps + 20 ps
= 900 ps

1.5 Which instruction(s) are responsible for the critical path?

Load instructions use all 5 datapath stages (lh calculated above takes 900 ps)

1.6 Why is the single-cycle datapath inefficient?

At any given time, most of the parts of the single cycle datapath are not being used. Even though
not every instruction exercises the critical path, the datapath can only be clocked as fast as the
slowest instruction.

2 Performance Analysis
Register clk-to-q 30 ps Branch comp. 75 ps DMEM write setup 200 ps
Register setup 20 ps ALU 200 ps Memory read 250 ps
Register hold 10 ps Imm. Gen. 15 ps Mux 25 ps
RegFile read 100 ps RegFile setup 20 ps

Given above are sample delays and setup times for each of the datapath components and registers.
In the questions below, use these in conjunction with the pipelined datapath on the last page to
answer them.

2.1 What would be the fastest possible clock time for a single cycle datapath? Recall from last
week’s discussion that one instruction which exercises the critical path is lw.

2

Pipelining, Hazards 3

(HINT: 𝑡clk-cycle ≥ 𝑡clk-to-q + 𝑡longest-combinational-path + 𝑡setup)

𝑡clk ≥ 𝑡PC clk-to-q + 𝑡IMEM read + 𝑡RF read + 𝑡mux + 𝑡ALU + 𝑡DMEM read + 𝑡mux + 𝑡RF setup

≥ 30 + 250 + 100 + 25 + 200 + 250 + 25 + 20
≥ 900 ps

Note that the delay in the immediate generator as well as the branch comparator are omitted
because the immediate generator and branch comparison is done in parallel with the RegFile
read and ALU computation respectively, the latter two taking much longer time.

2.2 What is the fastest possible clock time for a pipelined datapath?

𝐈𝐅 : 𝑡PC clk-to-q + 𝑡IMEM read + 𝑡Reg setup = 30 + 250 + 20 = 300 ps

𝐈𝐃 : 𝑡Reg clk-to-q + 𝑡RF read + 𝑡Reg setup = 30 + 100 + 20 = 150 ps

𝐄𝐗 : 𝑡Reg clk-to-q + 𝑡mux + 𝑡ALU + 𝑡Reg setup = 30 + 25 + 200 + 20 = 275 ps

𝐌𝐄𝐌 : 𝑡Reg clk-to-q + 𝑡DMEM read + 𝑡Reg setup = 30 + 250 + 20 = 300 ps

𝐖𝐁 : 𝑡Reg clk-to-q + 𝑡mux + 𝑡RF setup = 30 + 25 + 20 = 75 ps

𝑡clk ≥ max(𝐈𝐅, 𝐈𝐃, 𝐄𝐗, 𝐌𝐄𝐌, 𝐖𝐁) = 300 ps

The immediate generator and branch comparator delays are overshadowed by the longer delays
of RegFile read and ALU.

2.3 What is the speedup from the single cycle datapath to the pipelined datapath? Why is the speedup
less than 5x?
900 ps
300 ps = 3x speedup. The speedup is less than 5 because:

1) the necessity of adding pipeline registers, which have clk-to-q and setup times

2) the need to set the clock to the maximum of the five stages.

Note: Hazards require additional logic to resolve which would result in an even smaller perfor-
mance increase.

3 Solving Data Hazards
One of the costs of pipelining is that it introduces pipeline hazards. Hazards, gen- erally, are issues
with something in the CPU’s instruction pipeline that could cause the next instruction to execute
incorrectly. Recall that data hazards are caused by data dependencies between instructions. In
CS 61C, where we always assume that instructions go through the processor in order, we see data
hazards when an instruction reads a register before a previous instruction has finished writing to
that register.

For all questions, assume no branch prediction or double-pumping (i.e. write-then-read in one
cycle for RegFile).

3

4 Pipelining, Hazards

Forwarding
Most data hazards can be resolved by forwarding, which is when the result of the EX or MEM
stage is sent to the EX stage for a following instruction to use.

Side note: how is forwarding (EX to EX or MEM to EX) implemented in hardware? We add 2
wires: one from the beginning of the MEM stage for the output of the ALU and one from the
beginning of the WB stage. Both of these wires will connect to the A/B muxes in the EX stage.

3.1 Look for data hazards in the code below, and figure out how forwarding could be used to solve
them.

Instruction C1 C2 C3 C4 C5 C6 C7

1. addi t0, a0, -1 IF ID EX MEM WB

2. and s2, t0, a0 IF ID EX MEM WB

3. sltiu a0, t0, 5 IF ID EX MEM WB

There are two data hazards, between instructions 1 and 2, and between instructions 1 and 3.
The first could be resolved by forwarding the ALU output in the MEM stage to the beginning of
the EX stage in C4, and the second could be resolved by forwarding the ALU output in the WB
stage in C5 to the beginning of the EX stage in C5.

3.2 Imagine you are a hardware designer working on a CPU’s forwarding control logic. How many
instructions after the addi instruction could be affected by data hazards created by this addi
instruction?

Three instructions. For example, with the addi instruction, any instruction that uses t0 that has
its ID stage in C3, C4, or C5 will not have the result of addi’s writeback in C5. If, however, we
are allowed to assume double-pumping (write-then-read to registers), then it would only affect
two instructions since the ID stage of instruction 4 would be allowed to line up with the WB
stage of instruction 1.

Stalls
3.3 Identify the data hazards in the code below. One of them cannot be solved with forwarding—

why? What can we do to solve this hazard?

Instruction C1 C2 C3 C4 C5 C6 C7 C8

1. addi s0, s0, 1 IF ID EX MEM WB

2. addi t0, t0, 4 IF ID EX MEM WB

3. lw t1, 0(t0) IF ID EX MEM WB

4

Pipelining, Hazards 5

Instruction C1 C2 C3 C4 C5 C6 C7 C8

4. add t2, t1, x0 IF ID EX MEM WB

There are two data hazards in the code. The first hazard is between instructions 2 and 3, from
t0, and the second is between instructions 3 and 4, from t1. The hazard between instructions 2
and 3 can be resolved with forwarding, but the hazard between instructions 3 and 4 cannot be
resolved with forwarding. This is because even with forwarding, instruction 4 needs the result
of instruction 3 at the beginning of C6, and it won’t be ready until the end of C6.

We can fix this by stalling: insert a nop (no-operation) between instructions 3 and 4.

3.4 Say you are the compiler and can re-order instructions to minimize data hazards while guaran-
teeing the same output. How can you fix the code above?

Reorder the instructions 2-3-1-4, because instruction 1 has no dependencies.

Control Hazards
Control hazards are caused by jump and branch instructions, because for all jumps and some
branches, the next PC is not PC + 4, but the result of the ALU available after the EX stage. We
could stall the pipeline for control hazards, but this decreases performance.

3.5 Identify the control hazards in the code below. How can we resolve them?

Instruction C1 C2 C3 C4 C5 C6 C7 C8 C9

1. beq s0, s1, loop IF ID EX MEM WB

2. addi t0, t0, 4 IF ID EX MEM WB

3. ori t1, t1, 7 IF ID EX MEM WB

4. slli sp, sp, 2 IF ID EX MEM WB

5. addi a0, t0 2 IF ID EX MEM WB

There are three control hazards in the code. The first hazard is between instructions 1 and 2
because addi t0, t0, 4 may not get executed if the branch condition is true. The second
hazard is between instructions 1 and 3 for the same reason as above and similarly between
instructions 1 and 4. The branch condition and ALU outputs are available at the start of the MEM
stage (look at the pipeline register placement!) in C4, so we have to stall for 3 cycles. There is
no control hazard between instructions 1 and 5 because there is no need to stall instruction 5 if
the branch is not taken.

We can fix the hazards by stalling: insert three NOPs (no-operation) after the first instruction.

5

6 Pipelining, Hazards

3.6 Besides stalling, what can we do to resolve control hazards?

We can try to predict which way branches will go, and if this prediction is incorrect, flush the
pipeline and continue with the correct instruction. No branch prediction will always incur 3
stalls, while branch prediction can save 3 stalls on a correct prediction.

4 Hazards Practice
Given the RISC-V code below and a 5-stage pipelined CPU with no forwarding, how many
hazards would there be? What types are each hazard? Consider all possible hazards between all
instructions.

How many stalls would there need to be in order to fix the data hazard(s) if the RegFile supports
double-pumping (i.e. write-then-read)? What about the control hazard(s) if we use branch predic-
tion with perfect accuracy?

Instruction C1 C2 C3 C4 C5 C6 C7 C8 C9

(a) sub t1, s0, s1 IF ID EX MEM WB

(b) or s0, t0, t1 IF ID EX MEM WB

(c) sw s1, 100(s0) IF ID EX MEM WB

(d) bgeu s0, s2, loop IF ID EX MEM WB

(e) add t2, x0, x0 IF ID EX MEM WB

6

Pipelining, Hazards 7

There are four hazards: between instructions 1 and 2 (data hazard from t1), instructions 2 and 3
(data hazard from s0), instructions 2 and 4 (from s0), and instructions 4 and 5 (a control hazard).

Assuming that we can read and write to the RegFile on the same cycle, two stalls are needed
between instructions 1 and 2 (WB→ID), and two stalls are needed between instructions 2 and
3 (WB→ID). For the control hazard, if we predicted correctly, then no stalls are needed, but if
we predicted incorrectly, then we need 3 stalls to flush the pipeline (MEM→1 cycle before IF).
We don’t need to stall for the hazard between 2 and 4 because stalling for instruction 3 already
handles that.

Instruction C1 C2 C3 C4 C5 C6 C7 C8 C9

1. sub t1, s0, s1 IF ID EX MEM WB

 nop IF X X X X

 nop IF X X X X

2. or s0, t0, t1 IF ID EX MEM WB

 nop IF X X X X

 nop IF X X X

3. sw s1, 100(s0) IF ID EX

4. bgeu s0, s2, loop IF ID

5. add t2, x0, x0 IF

Instruction … C10 C11 C12 C13 C14 C15 C16 C17

 nop … X

3. sw s1, 100(s0) … MEM WB

4. bgeu s0, s2, loop … EX MEM WB

5. add t2, x0, x0 … ID EX MEM WB

Note that NOP is a pseudoinstruction for addi x0, x0, x0 and still goes through the ID-
WB stages.

7

8 Pipelining, Hazards

8

	Review: Single-Cycle Datapath
	Performance Analysis
	Solving Data Hazards
	Forwarding
	Stalls
	Control Hazards

	Hazards Practice

