
CS61C Pipelining, Hazards
Spring 2025 Discussion 9

1 Review: Single-Cycle Datapath
1.1 True or False? The single cycle datapath uses the outputs of all hardware units for each

instruction.

1.2 True or False? It is possible to execute the stages of the single-cycle datapath in parallel to speed
up execution of a single instruction.

1.3 Fill out the following table with the control signals for each instruction based on the single-cycle
datapath on the last page.
• If the value of the signal does not affect the execution of an instruction, use the * (don’t care)

symbol to indicate this.
• For ALUSel, write the ALU operation (add, or, sll, …)

BrEq BrLT PC-
Sel

Imm-
Sel BrUn ASel BSel ALUSel MemRW Reg-

WEn
WB-
Sel

xor

lb

jalr

1



2 Pipelining, Hazards

For this exercise, the times for each circuit element is given as follows:

Register clk-to-q 30 ps Branch comp. 75 ps DMEM write setup 200 ps
Register setup 20 ps ALU 200 ps Memory read 250 ps
Register hold 10 ps Imm. Gen. 15 ps Mux 25 ps
RegFile read 100 ps RegFile setup 20 ps

1.4 How long does it take to execute each instruction? Refer to the single-cycle datapath on the last
page of the worksheet.

(a) ori

(b) lh

1.5 Which instruction(s) are responsible for the critical path?

1.6 Why is the single-cycle datapath inefficient?

2



Pipelining, Hazards 3

2 Performance Analysis
Register clk-to-q 30 ps Branch comp. 75 ps DMEM write setup 200 ps
Register setup 20 ps ALU 200 ps Memory read 250 ps
Register hold 10 ps Imm. Gen. 15 ps Mux 25 ps
RegFile read 100 ps RegFile setup 20 ps

Given above are sample delays and setup times for each of the datapath components and registers.
In the questions below, use these in conjunction with the pipelined datapath on the last page to
answer them.

2.1 What would be the fastest possible clock time for a single cycle datapath? Recall from last
week’s discussion that one instruction which exercises the critical path is lw.

(HINT: 𝑡clk-cycle ≥ 𝑡clk-to-q + 𝑡longest-combinational-path + 𝑡setup)

2.2 What is the fastest possible clock time for a pipelined datapath?

2.3 What is the speedup from the single cycle datapath to the pipelined datapath? Why is the speedup
less than 5x?

3



4 Pipelining, Hazards

3 Solving Data Hazards
One of the costs of pipelining is that it introduces pipeline hazards. Hazards, gen- erally, are issues
with something in the CPU’s instruction pipeline that could cause the next instruction to execute
incorrectly. Recall that data hazards are caused by data dependencies between instructions. In
CS 61C, where we always assume that instructions go through the processor in order, we see data
hazards when an instruction reads a register before a previous instruction has finished writing to
that register.

For all questions, assume no branch prediction or double-pumping (i.e. write-then-read in one
cycle for RegFile).

Forwarding
Most data hazards can be resolved by forwarding, which is when the result of the EX or MEM
stage is sent to the EX stage for a following instruction to use.

Side note: how is forwarding (EX to EX or MEM to EX) implemented in hardware? We add 2
wires: one from the beginning of the MEM stage for the output of the ALU and one from the
beginning of the WB stage. Both of these wires will connect to the A/B muxes in the EX stage.

3.1 Look for data hazards in the code below, and figure out how forwarding could be used to solve
them.

Instruction C1 C2 C3 C4 C5 C6 C7

1. addi t0, a0, -1 IF ID EX MEM WB

2. and s2, t0, a0 IF ID EX MEM WB

3. sltiu a0, t0, 5 IF ID EX MEM WB

3.2 Imagine you are a hardware designer working on a CPU’s forwarding control logic. How many
instructions after the addi instruction could be affected by data hazards created by this addi
instruction?

4



Pipelining, Hazards 5

Stalls
3.3 Identify the data hazards in the code below. One of them cannot be solved with forwarding—

why? What can we do to solve this hazard?

Instruction C1 C2 C3 C4 C5 C6 C7 C8

1. addi s0, s0, 1 IF ID EX MEM WB

2. addi t0, t0, 4 IF ID EX MEM WB

3. lw t1, 0(t0) IF ID EX MEM WB

4. add t2, t1, x0 IF ID EX MEM WB

3.4 Say you are the compiler and can re-order instructions to minimize data hazards while guaran-
teeing the same output. How can you fix the code above?

Control Hazards
Control hazards are caused by jump and branch instructions, because for all jumps and some
branches, the next PC is not PC + 4, but the result of the ALU available after the EX stage. We
could stall the pipeline for control hazards, but this decreases performance.

3.5 Identify the control hazards in the code below. How can we resolve them?

Instruction C1 C2 C3 C4 C5 C6 C7 C8 C9

1. beq s0, s1, loop IF ID EX MEM WB

2. addi t0, t0, 4 IF ID EX MEM WB

3. ori t1, t1, 7 IF ID EX MEM WB

4. slli sp, sp, 2 IF ID EX MEM WB

5. addi a0, t0 2 IF ID EX MEM WB

5



6 Pipelining, Hazards

3.6 Besides stalling, what can we do to resolve control hazards?

4 Hazards Practice
Given the RISC-V code below and a 5-stage pipelined CPU with no forwarding, how many
hazards would there be? What types are each hazard? Consider all possible hazards between all
instructions.

How many stalls would there need to be in order to fix the data hazard(s) if the RegFile supports
double-pumping (i.e. write-then-read)? What about the control hazard(s) if we use branch predic-
tion with perfect accuracy?

Instruction C1 C2 C3 C4 C5 C6 C7 C8 C9

(a) sub t1, s0, s1 IF ID EX MEM WB

(b) or s0, t0, t1 IF ID EX MEM WB

(c) sw s1, 100(s0) IF ID EX MEM WB

(d) bgeu s0, s2, loop IF ID EX MEM WB

(e) add t2, x0, x0 IF ID EX MEM WB

6



Pipelining, Hazards 7

7


	Review: Single-Cycle Datapath
	Performance Analysis
	Solving Data Hazards
	Forwarding
	Stalls
	Control Hazards

	Hazards Practice

