
CS61C Hardware Performance, DLP
Spring 2025 Discussion 10

1 Pipelining Performance
In this question, we will be calculating the performance of the following RISC-V code:

1. addi t0, a0, -4
2. sw t0, 0(a0)
3. slli a1, t1, 4
4. slli a2, t2, 4

1.1 Calculate the number of cycles-per-instruction (CPI) given we run the code on a single-cycle
datapath.

1.2 Use the Iron Law to calculate the runtime of our program for our single-cycle datapath given
𝑡clk-period = 400 ns.

Hint: time
program =

instructions
program × cycles

instruction ×
time
cycle

1.3 Assume we have a 5-stage pipeline with no data forwarding, but our register file supports same-
cycle write-then-read. Fill out the pipeline diagram below, inserting NOPs where appropriate:

Instruction C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

1. addi t0, a0, -4 IF ID EX MEM WB

1

2 Hardware Performance, DLP

1.4 What is the CPI for our 5-stage pipeline calculated from the diagram above?

1.5 Use the Iron Law to calculate the runtime of our program for our 5-stage pipelined datapath
given 𝑡clk-period = 200 ns and approximating CPI ≈ 2.

1.6 If we modify our code to be:

1. addi t0, a0, -4
2. slli a1, t1, 4
3. slli a2, t2, 4
4. sw t0, 0(a0)

Fill out the pipeline diagram assuming we run on the same 5-stage pipeline as above. Calculate
the CPI and the execution time of our program (𝑡clk-period = 200 ns).

Instruction C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

1. addi t0, a0, -4 IF ID EX MEM WB

1.7 Why did reordering the instructions increase the performance of our code? And more generally,
what motivates us to study data forwarding, branch prediction, etc.?

2

Hardware Performance, DLP 3

2 Data-Level Parallelism
The idea central to data level parallelism is vectorized calculation: applying operations to multiple
items (which are part of a single vector) at the same time.

Below is a small selection of the available Intel intrinsic instructions. All of them perform opera-
tions using 128-bit registers. When we use an instruction with “epi32”, we treat the register as a
pack of 4 32-bit integers.

Function Description

__m128i Datatype for a 128-bit vector.

__m128i _mm_set1_epi32(int i)
Creates a vector with four signed 32-bit inte-
gers where every element is equal to i.

__m128i _mm_loadu_si128(__m128i *p)
Load 4 consecutive integers at memory ad-
dress p into a 128-bit vector.

void _mm_storeu_si128(__m128i *p, __m128i a) Stores vector a into memory address p

__m128i _mm_add_epi32(__m128i a, __m128i b)
Returns a vector =
(𝑎0 + 𝑏0, 𝑎1 + 𝑏1, 𝑎2 + 𝑏2, 𝑎3 + 𝑏3)

__m128i _mm_mullo_epi32(__m128i a, __m128i b)
Returns a vector =
(𝑎0 × 𝑏0, 𝑎1 × 𝑏1, 𝑎2 × 𝑏2, 𝑎3 × 𝑏3).

__m128i _mm_and_si128(__m128i a, __m128i b)
Perform a bitwise AND of 128 bits in a and b,
and return the result.

__m128i _mm_cmpeq_epi32(__m128i a, __m128i b)
The ith element of the return vector will be
set to 0xFFFFFFFF if the ith elements of a and
b are equal, otherwise it’ll be set to 0.

A longer list of Intel intrinsics can be found in the precheck worksheet!

2.1 SIMD-ize the following function, which returns the product of all of the elements in an array.

static int product_naive(int n, int *a) {
 int product = 1;
 for (int i = 0; i < n; i++) {
 product *= a[i];
 }
 return product;
}

Things to think about: When iterating through a loop and grabbing elements 4 at a time, how should
we update our index for the next iteration? What if our array has a length that isn’t a multiple of
4? What can we do to handle this tail case?

3

4 Hardware Performance, DLP

static int product_vectorized(int n, int *a) {
 int result[4];
 __m128i prod_v = __;

 // Vectorized Loop
 for (int i = 0; i < ______________; i += ________________) {

 prod_v = __;
 }

 _mm_storeu_si128(________________________, ______________________);

 // Handle tail case
 for (int i = ____________________; i < _____________; i++) {

 result[0] *= ________________________;
 }

 return ___;
}

2.2 Recall that Amdahl’s Law can be used to measure the maximum speedup that can be obtained
through parallelization:

Speedup = 1
(1 − fracoptimized) +

fracoptimized
factorimprovement

Assume that we measure product_vectorized to be 4x faster than its scalar version. We
measure that 20% of our overall program is run serially while 80% is run in parallel. Calculate
the performance increase gained from parallelizing our code.

4

Hardware Performance, DLP 5

2.3 Now we want to write a similar function that will only add elements given a certain condition.
For example:

static int add20_naive(int n, int *a) {
 int sum = 0;
 for (int i = 0; i < n; i++) {
 if (a[i] == 20) {
 sum += a[i];
 }
 }
 return sum;
}

Fill in the function to use a vector mask to add elements only if they are equal to 20:

static int add20_vectorized(int n, int *a) {
 int result[4];

 // Fill sum_v with zeros
 __m128i sum_v = ____________________________;

 int32_t twenty[4] = {20, 20, 20, 20};
 __m128i vec_twenty = ______________________________________;

 // Vectorized Loop
 for (int i = 0; i < __________________; i += _____________) {
 // Load array into vector
 __m128i vec_arr = _____________________________________;

 // Create vector mask
 __m128i vec_mask = ____________________________________;

 sum_v = ___;
 }

 _mm_storeu_si128(_____________________________);

 // Tail case...
 /* Omitted */
}

5

6 Hardware Performance, DLP

6

	Pipelining Performance
	Data-Level Parallelism

