CSGlC Har&ware Performance, DLP
Spring 2025 Discussion 10

| Pipelining Performance
In this question, we will be calculating the performance of the following RISC-V code:

addi tO0, a0, -4
sw t0, 0(a0)
slli al, t1, 4
slli a2, t2, 4

> w NN e

Calculate the number of cycles-per-instruction (CPI) given we run the code on a single-cycle
datapath.

Use the Iron Law to calculate the runtime of our program for our single-cycle datapath given

tclk—period = 400 ns.
Hint: time __ instructions cycles time
" program program instruction cycle

Assume we have a 5-stage pipeline with no data forwarding, but our register file supports same-
cycle write-then-read. Fill out the pipeline diagram below, inserting NOPs where appropriate:

Instruction C1 C2 C3 C4 C5 Ceo C7 Cs8 C9

C10

1. addi tO, a0, -4 IF ID EX MEM | WB

2 Hardware Performance, DLP

What is the CPI for our 5-stage pipeline calculated from the diagram above?

Use the Iron Law to calculate the runtime of our program for our 5-stage pipelined datapath

grven tclk—period

If we modify our code to be:

addi t0, a0, -4
slli a1, t1, 4
slli a2, t2, 4
sw t0, 0(a0)

D wWw NN

= 200 ns and approximating CPI ~ 2.

Fill out the pipeline diagram assuming we run on the same 5-stage pipeline as above. Calculate

the CPI and the execution time of our program (¢ perioa = 200 ns).
Instruction C1 C2 C3 C4 G5 Ceé Cc7 Cs8 C9 C10
1. addi tO, a0, -4 IF ID EX MEM | WB

Why did reordering the instructions increase the performance of our code? And more generally,

what motivates us to study data forwarding, branch prediction, etc.?

Hardware Performance, DLP 3

2 Data-Level Parallelism

The idea central to data level parallelism is vectorized calculation: applying operations to multiple
items (which are part of a single vector) at the same time.

Below is a small selection of the available Intel intrinsic instructions. All of them perform opera-
tions using 128-bit registers. When we use an instruction with “epi32”, we treat the register as a
pack of 4 32-bit integers.

Function Description

__mi128i Datatype for a 128-bit vector.

Creates a vector with four signed 32-bit inte-

__m128i _mm_setl_epi32(int i) . .
gers where every element is equal to i.

Load 4 consecutive integers at memory ad-
_m128i _mm_loadu_sil28(__m128i *p)

dress p into a 128-bit vector.

void _mm_storeu_sil128(__m128i *p, __m128i a) | Stores vector a into memory address p

Returns a vector =

(ag + by, aq + by, aq + by, a5 + bs)

Returns a vector =

(ag X by, aq X by,ay X by, ag X by).
Perform a bitwise AND of 128 bits in a and b,
and return the result.

_m128i _mm_add_epi32(__m128i a, __mi128i b)

__m128i _mm_mullo_epi32(__m128i a, __m128i b)

__m128i _mm_and_si128(__m128i a, __m128i b)

The ith element of the return vector will be
__m128i _mm_cmpeq_epi32(__m128i a, __m128i b) | set to OXFFFFFFFF if the ith elements of a and
b are equal, otherwise it’ll be set to 0.

A longer list of Intel intrinsics can be found in the precheck worksheet!

SIMD-ize the following function, which returns the product of all of the elements in an array.

static int product_naive(int n, int *a) {
int product = 1;
for (int i = 0; i < n; i++) {
product *= a[i];
}
return product;

}

Things to think about: When iterating through a loop and grabbing elements 4 at a time, how should
we update our index for the next iteration? What if our array has a length that isn’t a multiple of
4? What can we do to handle this tail case?

4 Hardware Performance, DLP

static int product_vectorized(int n, int *a) {
int result[4];
_-mi28i prod_v = ____________ ___ _ _ o ____ ;
// Vectorized Loop
for (int i = 0; i <

_mm_storeu_si128(________ ___ ____ _________ >)

// Handle tail case
for (int i = ;1< 3 i++) {

Recall that Amdahl’s Law can be used to measure the maximum speedup that can be obtained
through parallelization:

1

Speedup = 1 f fI'acop‘cimized
< - I'acoptimized) + factor

improvement

Assume that we measure product_vectorized to be 4x faster than its scalar version. We
measure that 20% of our overall program is run serially while 80% is run in parallel. Calculate
the performance increase gained from parallelizing our code.

Hardware Performance, DLP 5

Now we want to write a similar function that will only add elements given a certain condition.
For example:

static int add20_naive(int n, int *a) {
int sum = O;
for (int i = 0; i < n; i++) {
if (ali]l == 20) {
sum += a[i];

}

return sum;

}
Fill in the function to use a vector mask to add elements only if they are equal to 20:

static int add20_vectorized(int n, int *a) {
int result[4];

// Fill sum_v with zeros
__mi28i sum_v = ____ _ _ _ e ___ ;

int32_t twenty[4] = {20, 20, 20, 20};

__mi28i vec_twenty = ___________________ ___ __ __ _ ___________ ;

// Vectorized Loop

for (int 1 =0; i < __________________ s 1 += ___) {
// Load array into vector

_mi128i vec_arr = _______ __ ___ _ o __ H

// Create vector mask

__ml128i vec_mask = __ _ 5
SUM_V = ;
}
_mm_storeu_si128(_______ o)

// Tail case...
/* Omitted */

6 Hardware Performance, DLP

Single-Cycle Datapath Diagram

wdata
ALU
PC+4
Peed |0
PCH PC
ALU »1 B
| RegFile ~ \
A
wdata 1 DMEM
IMEM A
rdatal >0
inst LR/ L Branch T_ addr AU g
addr — Comp >ALU bers
inst[19:15] y > 2
rs1 ~ Mem
rdata2| 0 rdata 0
inst[24:20] s2 »B
o > 1 P
RegWEn A T L1
Y »\wdata
inst[31:7] Imm
Gen MemRW A
A A
A Y
[pcsel | [inst[31:0]] JRegWEn] ImmSel | [Brun [BrEq [BriT] BSel | Asel] ALUSel] [MemRwW] [wBsel]
5-Stage Datapath Diagram
inst
wdata
ALU
PC+4
>0) M M 1l
PC +4
AL g | - S
B PC RegFile |Pc ~
A
»wdat 1
IMEM ata DMEM
rdata’l 0
inst[11:7] d RegRead Branch addr
[Datal
addr —> Comp
. inst[19:15] A
|nst-D et sl ~
inst rdata2 0 rdata
inst[24:20] >ls2 RegRead
Data2 > 1/
RegWEN AN]
wdata
Imm
RegRead
inst[31:7) Gs‘n iam Data2 Men‘1RW /A
[[$
A A A 3
inst inst inst
A A
inst (WB) [RegWEn | [inst (D)[immsel] [linst (EX) [Brun[Breq[BrLt] BSel [ASel JALUSEl] [Memrw [inst m)] PCSel] ~ [wBSel]
|

	Pipelining Performance
	Data-Level Parallelism

