CS61C Thread-Level Parallelism
Spring 2025 Discussion 11

| Thread-Level Parallelism

For each question below, state whether the program is:

1) Always Correct, Sometimes Correct, Always Incorrect

2) Faster than Serial, Slower than Serial

Assume the number of threads can be any integer greater than 1 and that no thread will complete
in its entirety before another thread starts executing. arr is an int [] of length n.

// Set element i of arr to i
#pragma omp parallel

{
for (int i = 0; i < n; i++)
arr[i]

i;
}
1) Always Correct

2) Slower than Serial

The values will be correct at the end of the loop since each thread is writing the same values.

Note that there is no for directive, so every thread executes this loop in its entirety. The
overhead of creating and managing threads will slow down the execution time to be slower than

serial.
arr[0] = 0;
arr[1] = 1;

#pragma omp parallel for
for (int i = 2; i < n; i++)
arr[i] = arr[i-1] + arr[i - 2];

1) Sometimes Correct

2) Slower than Serial

Sometimes correct: the loop has dependencies from previous data, so each thread would have
to wait for its previous dependency to finish which does not occur in this loop. However, there
exists a thread ordering where they execute in such a way that they complete each iteration in

sequential order.
Even if this happened, this would still be slower than serial due to the multithreading overhead

required.

2 Thread-Level Parallelism

// Set all elements in arr to O;
int 1i;
#pragma omp parallel for
for (i = 0; i < n; i++)
arr[i] = 0;

1) Always Correct

2) Faster than Serial

The for directive automatically makes loop variables (such as the index) private, so this will
work properly. The for directive splits up the iterations of the loop to optimize for efficiency,

and there will be no data races.

// Set element i of arr to ij;
int 1i;
#pragma omp parallel for
for (i = 0; i < n; i++) {
*arr = 1;
arr++;

}

1) Sometimes Correct

2) Slower than Serial

Because each thread shares the array pointer, there is a data race when incrementing the array
pointer. If multiple threads are executed such that they all execute the first line, *arr = 1ij;
before the second line, arr++;, they will clobber each other’s outputs by overwriting what the
other threads wrote in the same position. However, there is a thread execution order that will

not encounter data races, though it will be slower than serial.

2 Critical Sections

Consider the following multithreaded code to compute the product over all elements of an array.

// Assume arr has length 8#n.
double fast_product(double *arr, int n) {
double product = 1;
#pragma omp parallel for
for (int i = 0; i < n; i++) {
double subproduct = arr[i*8]*arr[i*8+1]*arr[ix8+2]*arr [i*8+3]
* arr[i*8+4]xarr [i*8+5] xarr [i*8+6] xarr [i*8+7] ;

product *= subproduct;

}

return product;

Thread-Level Parallelism 3

(a) What is wrong with this code?

The code has the shared variable product, which can cause data races when multiple
threads access it simultaneously.

(b) Fix the code using #pragma omp critical. On which line should you place the directive
to create the critical section?

// Assume arr has length 8#n.
double fast_product(double *arr, int n) {
double product = 1;
#pragma omp parallel for
for (int i = 0; 1 < n; i++) {
double subproduct = arr[i*8]
* arr [i*8+2]
* arr[1*8+4]
* arr[i*8+6]
#pragma omp critical

arr [i*8+1]
arr [i*8+3]
arr [i*8+5]
arr [i*8+7];

* ¥ X x

product *= subproduct;
}

return product;

When added to a #pragma omp parallel for statement, the reduction(operation: var)
directive creates and optimizes the critical section for a for loop, given a variable that should be
in the critical section and the operation being performed on that variable. An example is given
below.

// Assume arr has length n
int fast_sum(int *arr, int n) {
int result = 0;
#pragma omp parallel for reduction(+: result)
for (int i = 0; i < n; i++) {
result += arr[i];
b
return result;

}

Fix fast_product by adding the reduction(operation: var) directive to the #pragma omp
parallel for statement. Which variable should be in the critical section, and what is the
operation being performed?

4 Thread-Level Parallelism

// Assume arr has length 8*n.
double fast_product(double *arr, int n) {
double product = 1;

for (int i = 0; i < n; i++) {
double subproduct = arr[i*8]*arr[i*8+1]xarr[i*8+2]*arr [i*8+3]
* arr[i*8+4]*arr [i*x8+5]*arr [i*8+6] *arr [i*8+7];
product *= subproduct;

}

return product;

double fast_product(double *arr, int n) {

double product = 1;

#pragma omp parallel for reduction (*:product)

for (int i = 0; i < n; i++) {
double subproduct = arr[i*8]*arr[i*8+1]*arr[i*8+2]*arr [i*8+3]

* arr[i*8+4]xarr[i*8+5] *xarr [i*8+6] xarr [i*8+7] ;

product *= subproduct;

}

return product;

Take a look at the following code which is run with two threads:

#tdefine N 5

void func() {
int A[N] = {1, 2, 3, 4, 5};

int x = 0;
#pragma omp parallel
{
for (int 1 = 0; 1 < N; i +=1) {
x += A[i]l;
Ali] = 0;
b
by

}

What are the maximum and minimum values that x can have at the end of func?

Thread-Level Parallelism 5

Each of the 2 threads will independently:
+ Read value from X

Read value from A

« Add value to x

Zero out value in A

+ Do the loop for 5 iterations each

Maximum: x = 30 - if thread 1 reads from x, reads from the array, and adds to x, and then
thread 2 reads from the new x, reads from the array, and adds to x before the array entry gets
zeroed, then x will have the value of x += A[i] + A[i].

Minimum: x = O - thread 2 reads from x getting the value x = 0 but halts and waits for thread
1 to completely finish (setting all array entries to 0). When thread 2 resumes execution, it will
add its current value for x to a zeroed A[i] which willbe 0 + 0 = 0 at all iterations of the loop.

3 OpenMProgramming

Consider the following C function:

#define ARRAY_LEN 1000

void mystery(int32_t *A, int32_t *B, int32_t *C) {
for (int i = O; i < ARRAY_LEN; i += 1) {
cl[i]l = A[il - BI[il;
}
}

Manually rewrite the loop to split the work equally across N different threads.
#define ARRAY_LEN 1000

void mystery(int32_t *A, int32_t *B, int32_t *C) {
#pragma omp parallel

{
int N = OMP_NUM_THREADS;
int tid = omp_get_thread_num();

for (int i = tid; i < ARRAY_LEN; i += N) {
C[i] = A[i] - B[il;
b
b
3

Now;, split the work across N threads using a #pragma directive:

6 Thread-Level Parallelism

#define ARRAY_LEN 1000

void mystery(int32_t *A, int32_t *B, int32_t *C) {
#pragma omp parallel for
for (int i = 0; i < ARRAY_LEN; i += 1) {
Cl[il = A[il - BI[il;
}
b

Instead of saving the product to an array C, we now want to XOR the subtraction of all the
elements of A and B.

#define ARRAY_LEN 1000

int mystery(int32_t *A, int32_t *B) {
int result = 0;
#pragma omp parallel for
for (int i = 0; i < ARRAY_LEN; i += 1) {
result ~= A[i] - B[i];
}

return result;

}

What is the issue with the above implementation and how can we fix it?

There is a race condition for the result variable.
Solve the problem above in two different methods using OpenMP:

(@) int mystery(int32_t *A, int32_t *B) {
int result = 0;
#pragma omp parallel for
for (int i = 0; i < ARRAY_LEN; i += 1) {
#pragma omp critical
result A= A[i] - B[il;
}

return result;

Thread-Level Parallelism 7

(b) int mystery(int32_t *A, int32_t *B) {
int result = 0;
#pragma omp parallel for reduction(”:result)
for (int i = 0; i < ARRAY_LEN; i += 1) {
result A= A[i] - B[il;
}

return result;

Assume we run the above mystery function with 8 threads. The parallel portion accounts for
80% of the program and is 8x as fast as the naive implementation. Use Amdahl’s Law to calculate

the speedup of the full program where

1
Speedup = L frac,ptimized
(- I'acoptimized) + m
Speed .
peedup = fracptimize
(1 - fracoptimizcd) + m
B 1
(1-0.8) + %
B 1
©0.2+40.1

= 3.333x speedup!

What is the maximum speedup we can achieve if we use unlimited threads in the parallel section
for an infinite performance increase? Assume the parallel portion still accounts for 80% of our

program.
1
Speedup - f fracoptimizcd
(1 - racoptimized) + factorimp,mﬂncm
1

= — 0.8
(1 —0.8) + 550999
1

0.2

= 5x maximum speedup!

What does the above result tell you about using parallelism to optimize programs?

Programs can only be as fast as their serial portion.

	Thread-Level Parallelism
	Critical Sections
	OpenMProgramming

