
CS61C Thread-Level Parallelism
Spring 2025 Discussion 11

1 Thread-Level Parallelism
For each question below, state whether the program is:

1) Always Correct, Sometimes Correct, Always Incorrect

2) Faster than Serial, Slower than Serial

Assume the number of threads can be any integer greater than 1 and that no thread will complete
in its entirety before another thread starts executing. arr is an int[] of length n.

1.1 // Set element i of arr to i
#pragma omp parallel
{
 for (int i = 0; i < n; i++)
 arr[i] = i;
}

1.2 arr[0] = 0;
arr[1] = 1;
#pragma omp parallel for
for (int i = 2; i < n; i++)
 arr[i] = arr[i-1] + arr[i - 2];

1.3 // Set all elements in arr to 0;
int i;
#pragma omp parallel for
for (i = 0; i < n; i++)
 arr[i] = 0;

1.4 // Set element i of arr to i;
int i;
#pragma omp parallel for
for (i = 0; i < n; i++) {
 *arr = i;
 arr++;
}

1

2 Thread-Level Parallelism

2 Critical Sections
2.1 Consider the following multithreaded code to compute the product over all elements of an array.

// Assume arr has length 8*n.
double fast_product(double *arr, int n) {
 double product = 1;
 #pragma omp parallel for
 for (int i = 0; i < n; i++) {
 double subproduct = arr[i*8]*arr[i*8+1]*arr[i*8+2]*arr[i*8+3]
 * arr[i*8+4]*arr[i*8+5]*arr[i*8+6]*arr[i*8+7];
 product *= subproduct;
 }
 return product;
}

(a) What is wrong with this code?

(b) Fix the code using #pragma omp critical. On which line should you place the directive
to create the critical section?

2.2 When added to a #pragma omp parallel for statement, the reduction(operation: var)
directive creates and optimizes the critical section for a for loop, given a variable that should be
in the critical section and the operation being performed on that variable. An example is given
below.

// Assume arr has length n
int fast_sum(int *arr, int n) {
 int result = 0;
 #pragma omp parallel for reduction(+: result)
 for (int i = 0; i < n; i++) {
 result += arr[i];
 }
 return result;
}

Fix fast_product by adding the reduction(operation: var) directive to the #pragma omp
parallel for statement. Which variable should be in the critical section, and what is the
operation being performed?

2

Thread-Level Parallelism 3

// Assume arr has length 8*n.
double fast_product(double *arr, int n) {
 double product = 1;

 __
 for (int i = 0; i < n; i++) {
 double subproduct = arr[i*8]*arr[i*8+1]*arr[i*8+2]*arr[i*8+3]
 * arr[i*8+4]*arr[i*8+5]*arr[i*8+6]*arr[i*8+7];
 product *= subproduct;
 }
 return product;
}

2.3 Take a look at the following code which is run with two threads:

#define N 5

void func() {
 int A[N] = {1, 2, 3, 4, 5};
 int x = 0;
 #pragma omp parallel
 {
 for (int i = 0; i < N; i += 1) {
 x += A[i];
 A[i] = 0;
 }
 }
}

What are the maximum and minimum values that x can have at the end of func?

3

4 Thread-Level Parallelism

3 OpenMProgramming
Consider the following C function:

#define ARRAY_LEN 1000

void mystery(int32_t *A, int32_t *B, int32_t *C) {
 for (int i = 0; i < ARRAY_LEN; i += 1) {
 C[i] = A[i] - B[i];
 }
}

3.1 Manually rewrite the loop to split the work equally across N different threads.

#define ARRAY_LEN 1000

void mystery(int32_t *A, int32_t *B, int32_t *C) {
 #pragma omp parallel
 {
 int N = OMP_NUM_THREADS;
 int tid = omp_get_thread_num();

 for (int i = ____________; i < ______________; i += _____________) {
 C[i] = A[i] - B[i];
 }
 }
}

3.2 Now, split the work across N threads using a #pragma directive:

#define ARRAY_LEN 1000

void mystery(int32_t *A, int32_t *B, int32_t *C) {

 __
 for (int i = 0; i < ARRAY_LEN; i += 1) {
 C[i] = A[i] - B[i];
 }
}

4

Thread-Level Parallelism 5

3.3 Instead of saving the product to an array C, we now want to XOR the subtraction of all the
elements of A and B.

#define ARRAY_LEN 1000

int mystery(int32_t *A, int32_t *B) {
 int result = 0;
 #pragma omp parallel for
 for (int i = 0; i < ARRAY_LEN; i += 1) {
 result ^= A[i] - B[i];
 }
 return result;
}

What is the issue with the above implementation and how can we fix it?

3.4 Solve the problem above in two different methods using OpenMP:

(a) int mystery(int32_t *A, int32_t *B) {
 int result = 0;
 #pragma omp parallel for
 for (int i = 0; i < ARRAY_LEN; i += 1) {

 result ^= A[i] - B[i];
 }
 return result;
}

(b) int mystery(int32_t *A, int32_t *B) {
 int result = 0;

 for (int i = 0; i < ARRAY_LEN; i += 1) {
 result ^= A[i] - B[i];
 }
 return result;
}

5

6 Thread-Level Parallelism

3.5 Assume we run the above mystery function with 8 threads. The parallel portion accounts for
80% of the program and is 8x as fast as the naive implementation. Use Amdahl’s Law to calculate
the speedup of the full program where

Speedup = 1
(1 − fracoptimized) +

fracoptimized
factorimprovement

3.6 What is the maximum speedup we can achieve if we use unlimited threads in the parallel section
for an infinite performance increase? Assume the parallel portion still accounts for 80% of our
program.

3.7 What does the above result tell you about using parallelism to optimize programs?

6

	Thread-Level Parallelism
	Critical Sections
	OpenMProgramming

