C561C Yan
Spring 2025 Midterm

Solutions last updated: Monday, March 31, 2025

PriNT Your Name:

PrINT Your Student ID:

PRINT the Name and Student ID of the person to your left:

PrRINT the Name and Student ID of the person to your right:

PrINT the Name and Student ID of the person in front of you:

PrINT the Name and Student ID of the person behind you:

You have 110 minutes. There are 8 questions of varying credit. (100 points total)

Question: | 1 2 3 4 5 6 7 8 Total
Points: 14) 11 | 21 | 24 | 13 8 9 0 100

For questions with circular bubbles, you may For questions with square checkboxes, you may
select only one choice. select one or more choices.

O Unselected option (Completely unfilled) B You can select

@ Don’t do this (it will be graded as incorrect) B multiple squares

@ Only one selected option (completely filled) [V (Don’t do this)

Anything you write outside the answer boxes or you eress-eut will not be graded. If you write multiple
answers, your answer is ambiguous, or the bubble/checkbox is not entirely filled in, we will grade the
worst interpretation. For coding questions with blanks, you may write at most one statement per blank
and you may not use more blanks than provided.

If an answer requires hex input, you must only use capitalized letters (OxBOBACAFE instead of
OxbObacafe). For hex and binary, please include prefixes in your answers unless otherwise specified,
and do not truncate any leading 0’s. For all other bases, do not add any prefixes or suffixes.

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others. I will

follow the rules of this exam.

Acknowledge that you have read and agree to the honor code above and sign your name below:

Page 1 of 23

This content is protected and may not be shared, uploaded, or distributed.

Clarifications made during the exam:
Q1.5: On line 6, jal ra should be jr ra [fixed]
Q5.4: Main memory access time refers to the L1 cache miss penalty.

Q4.13: On page 9, the example under the table should read “For example, if a0 points to ... then
store_str_as_int would store the word 0x12345678 at 0x10000000” [fixed]

Midterm Page 2 of 23 CS61C — Spring 2025

This content is protected and may not be shared, uploaded, or distributed.

Q1 Potpourri@ (14 points)

Q1.1 (1.5 points) Convert -49 from decimal to 8-bit binary two’s complement representation.

Ob11001111

Solution: —49 = —128 + 64 + 8 + 4 + 2 + 1. Alternatively, you can “flip the bits and add one”
to the binary representative of 4-49, giving: 0000110001 -> 0b11001110 -> 0b11001111

Common error(s): 0b11001110 if converted to one’s complement instead of two’s complement.

Q1.2 (1.5 points) Convert the biased hexadecimal number 0x2A (with a bias of —31) to decimal.

11

Solution: 42 — 31 =11

Common error(s): subtracted the bias instead of adding: 42 — (—31) = 73

Q1.3 (2 points) Convert the RISC-V instruction beq a3 s1 12 into 32-bit hexadecimal machine code.

0x00968663

Solution: 0x00968663

The opcode for beqis 00110 0011, the funct3 is 0b000, and the instruction is a B-type instruction
with rs1 = a3 (0b01101), rs2 = s1 (01001), and offset/immediate = 12 (0b0000000001100).
Putting this together according to the B-type format gives 0b0000000 01001 01101 000 01100
1100011, or 0x00968663. Note that for branch and jump instructions, the implicit Oth bit is
omitted.

Common error(s): Forgot the implicit bit for branch and jump instructions, did not rearrange the

immediate bits according to the B-type instruction format, or swapped placement of rs1 and rs2.

Q1.4 (2 points) Convert the following RISC-V machine code into its corresponding instruction. If there
is an immediate value, express it in decimal form. Provide the appropriate register names, not
numbers, where necessary (e.g., sb instead of x21).

0x01685A93

srli s5, a6, 22

Midterm (Question 1 continues...) Page 3 of 23 CS61C — Spring 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 1 continued...)

Solution: srli s5, a6, 22

Breakdown: 0b0000 0001 0110 1000 0101 1010 1001 0011 Opcode = 001 0011 -> this is an
I-type instruction. Looking at the funct3 (0b101) and funct7(0b000000), we narrow it down to
an srli instruction. Finally we translate rd, rs1, and immediate according to the I-type instruction
format chart, and fill in the overall instruction.

Common error(s): swapped positions of rd and rs1, used numbers instead of appropriate register

names.

Q1.5 (2 points) In the code below, which registers are used in a way that violates calling convention?

foo:
lui a0, OxFFEEO
addi tO, a0, 4
jal ra bar
1w s0, 0(t0)
jr ra

[]J a0 B to [sp
[Jat [B [Ex!

o O W

Solution: t0, a temporary register, is used after the call jal ra bar, even though its value may no
longer be defined. s0, a saved register, is written without saving it’s original value. Finally, ra must be
saved in order to properly return from the function foo after ra is modified by the call jal ra bar.

Exam clarification: jal ra on line 6 should instead be jr ra

Q1.6 (1 point) Which of these statements about the Assembly stage of CALL are true? Select all that
apply.
Il Outputs a file that contains text and data segments

[] Converts high-level language code to assembly language code
B Generates a relocation table

[C] Resolves all label and data references

Midterm (Question 1 continues...) Page 4 of 23 CS61C — Spring 2025

This content is protected and may not be shared, uploaded, or distributed.

© 00 N O O WN -

e e a a
S W N = O

(Question 1 continued...)

(4 points) You have started a GDB session with the following code segment:

int main(int argc, char *argv([]) {

char *crops[4] = {"parsnip", "melon", "pumpkin", "corn"};

int count = // code omitted;
--> quality(crops, count);

}

void quality(char** crops, int count){
while (count >= 0) {
// code omitted
quality_crops = // code omitted
count -= 1;
}
return quality_crops

}

Your GDB session is about to execute line 4, but has not executed it yet. Write a sequence of GDB

commands that would perform the following actions. Assume each command is executed before the next:

1. print the address of count:

(gdb) p_&count

Q1.7
2. set a breakpoint on line 10 if count is even:

(gdb) b 10 if (Count % 2) ==
Q1.8

(gdb) _c

Q1.9
4. print 1 if quality_crops is 3, otherwise print O:

(gdb) p quality_crops ==
Q1.10

3. go to your breakpoint without restarting your session:

Solution: see blanks above. Tip: review the debugging lab!

Common error(s): p count instead of p &count, you need the & to specify the address of a variable.

Midterm Page 5 of 23

This content is protected and may not be shared, uploaded, or distributed.

CS61C — Spring 2025

~NOoO O WN -

00 N O O b W N -

Q2 Conditional Eggsecution (11 points)

For the entirety of this question, consider the following C code:

conditional_sum: Takes the values greater than or equal to 50 in arr, and adds their sum to *dest.

int32_t *dest | Pointer to allocated space for the sum.

Arguments | int32_t *arr | Array of integers to conditionally sum.

size_t length | The number of elements in arr.

Return value | void

void conditional_sum(int32_t *dest, int32_t *arr, size_t length) {
for (int i = 0; i < length; i++) {
if (arr[i] >= 50) {
*dest += arr[i];

Q2.1 (4 points) We decide to call this function from main on a 32-bit little-endian system:

int main() {
int32_t destl
int32_t dest2
int16_t arri[4] = {0x0080, 0xA000, 0x0036, 0x0000};
uint8_t arr2[4] = {0x6C, OxFF, OxFF, OxFF};
conditional_sum(&destl, (int32_t *) arril, 2);
conditional_ sum(&dest2, (int32_t *) arr2, 1);

}

.
)

0
0

b

What are the values in dest1 and dest?2 in hexadecimal after main is run?

destl: 0x36

dest2: 0x0

Midterm (Question 2 continues...) Page 6 of 23 CS61C — Spring 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 2 continued...)

Solution: Given a little endian system, each byte is stored LSB first. This means from highest to lowest
memory address, arr1 looks like this: 0x80 0x00 0x00 0xAO 0x36 0x00 0x00 0x00, while arr2
looks like this: 0x6c OxFF OxFF OxFF. Note that elements in an array are still stored in order with
the first element having the lowest address.

destl: Casting arrl to an array of int32_t of length 2, we get the two values 0xA0000080 and
0x00000036. Only 0x00000036 is greater than 50 (0xA0000080 is negative), so that is our overall sum.

dest2: Similarly, treating arr2 as a int32_t gives us OXFFFFFF6C, which is negative and less than 50.
Thus our overall sum is 0.

Common error(s): Storing bytes in big endian instead of little endian, missing the cast to (int32_t *),
interpreting as a uint32_t instead of int32_t.

Q2.2 (1 point) Which section of memory would the variable dest1 live in?

@ Stack O Heap QO Code Q static

Midterm (Question 2 continues...) Page 7 of 23 CS61C — Spring 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 2 continued...)

Q2.3 (6 points) Write the loop body of conditional_sum to use bit masking instead of branch state-
ments (if-else) or comparisons.

Hint: If arr[i] < 50, what is the sign of arr[i] - 507
You may assume that:

« Signed integers are stored in two’s complement.
+ No overflows occur during addition/subtraction. This means that arr[i] - 50 does not overflow.
« dest is large enough to hold the result.

Your answer may consist of only the following operations:

Allowed
Addition / Subtraction | + -
Shifts << and >> (sign-extended)
Bitwise Operations ~& | A
Boolean Operations ! && ||
Parentheses O
Array Subscripting arr [x]

1| void conditional_sum(int32_t *dest, int32_t *arr, size_t length) {

2 uint32_t mask;

3 for (int i = 0; i < length; i++) {

4 mask = ~((arr[i] - 50) >> 31);

Q2.3

5 *dest += mask & arr[i];

6 }

7}
Solution: Alternate solution: (49 - arr[i]) >> 31
Based on the hint, we know thatif arr[i] < 50, thenarr[i] - 50 < 0.This means that arr[i] -
50 will be negative, and thus have a MSB = 1. We can use this fact to create a mask for each arr[i],
where the mask will equal OxFFFF if arr[i] >= 50, and equal to 0x0000 if arr[i] < 50. We do
this by right shifting (and sign extending) the MSB by 31 bit positions, which extends the sign bit
across all 32 bits of our mask. Because we want all ones if our number is positive (MSB = 0), and all
zeroes if our number is negative (MSB = 1), we take the bitwise NOT of this shifted value to be our
mask. Finally, we can perform a bitwise AND of the mask with our value, effectively zeroing out any
element < 50 before summing.

Midterm Page 8 of 23 CS61C — Spring 2025

This content is protected and may not be shared, uploaded, or distributed.

OO WN -

Q3 Generic Linked Lists (21 points)

This question defines a linked list with a twist: The linked list uses generics to store data without a data
type! Consider the following definition of a linked list node, node_t:

typedef struct node {
struct node *next_node; // next_node is a node_t*. If this node is the end
// of the list, next_node is NULL
size_t width; // size of data, in bytes
void *data;
} node_t;

(9 points) Implement the function add_head_node. The memcpy function prototype is provided below
for your reference:

|void *memcpy (void *dest, void *src, size_t n);

add_head_node: Add a new node to the head of 1ist whose data member points to a heap-
allocated copy of temp, which is width bytes long.

node_t *1list | Pointer to linked list to add a new head node to

Arguments | size_t width | The size of temp, in bytes

void *temp A pointer to the data that should be copied into this node

Return value | node_t *head | The new head of the linked list

node_t* add_head_node(node_t *1list, size_t width, void* temp){

node_t *head = (node t *)malloc(sizeof (node t));
Q3.1

head->next_node = list;
Q3.2

head->width = width;
Q3.3

head->data = malloc(width);
Q3.4

memcpy (head->data, temp, width);
Q3.5 Q3.6 Q3.7

return head;
Q3.8

Midterm (Question 3 continues...) Page 9 of 23 CS61C — Spring 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 3 continued...)

Solution: We want to create a new head node that points to the previous head of our linked list, with
a copy of the data pointed to by temp. First, we need to allocate space for this new node on the heap
usingmalloc(sizeof (node_t)) or calloc(1l, sizeof (node_t)). Then we tell the new head node
to point to the old list with head->next_node = list. We then set the data width of this particular
node, and use that value to malloc space for the data we are about to copy. Finally, we use memcpy to
copy over the data from temp into the newly allocated space pointed to by head->data.

Common error(s): Note that both malloc and calloc return the void * type, meaning they return
a pointer to the allocated space, not the space itself. When accessing members of a struct given the
pointer to the struct, use arrow notation: head->next_node or dereference first (*xhead) .next_node.

Midterm (Question 3 continues...) Page 10 of 23 CS61C — Spring 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 3 continued...)

(7 points) Implement the function arr_to_11 that uses add_head_node to convert an array of strings
into a linked list, preserving the order of elements. In other words, the head of the linked list returned
from arr_to_11 should contain a pointer to a copy of the data in arr [0] on the heap.

Regardless of what you wrote before, assume that add_head_node is correctly implemented.

arr_to_11: Given a char* array, create an equivalent linked list of strings

char** arr Array of strings

Arguments - - -
size_t count | The number of strings in the array arr

Return value | node_t *head | The head of the linked list

node_t* arr_to_ll(char** arr, size_t count){
node_t *head = NULL;

for (size_t i = count; i > 0; i--) {
Q3.9 Q3.10

size_t len = strlen(arr[i-1]) + 1;
@3.11

head = add_head_node(head , len , arr[i-1])
} Q3.12 Q3.13 Q3.14

return head ;
Q3.15

Solution: In order for the head node to contain the first string in our array, and the last node to contain
the last string in our array, we need to iterate backwards across arr as we build the linked list. We use
the add_head_node function to add nodes for us, but it takes in a size_t width argument. We can
figure out how many bytes we need to store each string using the strlen() function, which tells us
the number of bytes in a string up to but not including the null terminator. To ensure that we copy over
well formed strings, we add 1 to this value to get the total number of bytes needed to store each string.

Common error(s): Not considering the null terminator when calculating length, off by one iteration in
the for loop (i >= 0), improper array indexing (Ex. (xarr) [i-1]).

(5 points) Finally, implement the function free_11 that frees a linked list returned from add_head_node.
Assume that the data member of each node in the list points to heap-allocated memory.

free_11: Given a linked list of nodes, free the entire linked list

Arguments | node_t *1list | Pointer to the linked list to free

Return value | void

Midterm (Question 3 continues...) Page 11 of 23 CS61C — Spring 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 3 continued...)

void free_ll(node_t* list){
node_t *curr = list;

while (curr != NULL) {
Q3.16

node_t *temp = curr ;
Q3.17

curr = curr->next node;
Q3.18

free(temp->data) ;
Q3.19

free(temp);
3.20

Solution: For each node of our linked list, we need to free the space we allocated for the node data as
well as the space for the node itself. To do this, we use a temporary node_t * to point to the node to
be freed, while we move our loop pointer curr to the next node. This allows us to free temp->data
and temp while maintaining a reference to the rest of our linked list.

Common error(s): Incorrect free (freeing temp->width or temp->next_node), incorrect struct mem-
ber accesses (Ex. (¥temp) ->data or temp.data), freeing the node before we free the node’s data (this
causes us to lose the pointer to allocated memory).

Midterm

Page 12 of 23

This content is protected and may not be shared, uploaded, or distributed.

CS61C — Spring 2025

Q4 Not Like Us @

(24 points)

Consider the function store_first_byte as described below on a 32-bit little-endian system:

store_first_byte:

Reads the first two digits of a string as hexadecimal and stores it in memory.

a0 [A charx* consisting of chars from '0' - '9'. strlen(a0) is even and at least 2.
Arguments al A pointer to allocated memory to store the first byte of the string pointed to by
a0 read as hexadecimal
Return value | void

For example, if a0 points to "12345678", and al contains 0x10000000, then store_first_byte would

store the byte 0x12 at 0x10000000.

(10 points) Implement your own version of store_first_byte but the only load instruction you can

use is 1bu:

store_first_byte:

1bu t0 0(a0)
Q4.1

slli t0 t0 4
Q4.2

1bu t1 1(a0)
Q4.3

andi t1 t1 15
Q4.4

add tO0 tO t1

Q4.5

jr ra

sb t0 0(al)
Q4.6

Solution: Key ideas: the ascii values of each digit character is different from the value of the digit
itself, (Ex. 2 # 0x32). However, for the digits 0 - 9 (0x30 - 0x39), we see that the bottom 4 bits (or 1
hex digit) of their ascii value matches the digit value, and is in hexadecimal as desired.

We first load the byte for the first number character using lbu, storing this in t0. In the provided
example, we would load 0x31 for the character ‘1. We then shift this left by 4 bits to position the
character in the correct spot (Ex.0x31->0x310). We then load the second number character into t1,
which in the example is 0x32 or the character ‘2’. Because we only want the bottom 4 bits, we perform
a bitwise AND of t1 with 15 or O0b1111 in binary. Finally, we add t0 and t1 to get 0x312, and we can
use the sb instruction to store just the bottom 1 byte (0x12) into memory.

(10 points) Now, re-implement store_first_byte, but the only load instruction you can use is 1hu.

Midterm (Question 4 continues...)

Page 13 of 23 CS61C — Spring 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 4 continued...)

store_first_byte:

lhu t0 0(a0)
Q4.7

srli t1 t0 8
Q4.8

andi t1 t1 15

Q4.9

slli t0 t0O 4
Q4.10

add t0 tO0 t1
Q4.11

sb t0 0(al)
Q4.12

jr ra

Solution: The difference here is that because we are using 1hu, we get the first 2 “digit characters” of
our string at the same time, albeit in the “wrong” order due to the endinanness of the system (in the
provided example, we would load in 0x3231). To place the first 4 bits in the correct location, we shift
this value by 8 bits and store it in t1 (0x3231 -> 0x32). Similar to the previous problem, we perform a
bitwise AND to isolate only the bottom 4 bits (0x2). For the second 4 bits, we shift the original number
left by 4 (0x3231 -> 0x32310). Finally, we add these two values (0x32310 + 0x2 = 0x32312), and use
sb to store the byte (0x12) into memory.

Now, consider the following function store_str_as_int:

store_str_as_int:

Reads a string of digits as hexadecimal and stores it in memory.

Arguments

a0

A char* consisting of chars from '0' — '9'. strlen(a0) is exactly 8.

al

A pointer to allocated memory to store the value of the string pointed to by a0
read as hexadecimal

Return value

void

For example, if a0 points to "12345678", and al contains 0x10000000, then store_str_as_int would
store the word 0x12345678 at 0x10000000.

Drake implements store_str_as_int in the following way:

Midterm (Question 4 continues...) Page 14 of 23 CS61C — Spring 2025

This content is protected and may not be shared, uploaded, or distributed.

© 00 N O O WN -

R e
W NN -, O

(Question 4 continued...)

store_str_as_int:
prologue omitted
loop:
1b t0 0(a0)
beqz t0 end
save a0 and al on the stack
jal ra store_first_byte
restore a0 and al from the stack
addi a0 a0 2
addi al a1 1
j loop
end:
epilogue omitted

ret

Regardless of what you wrote before, assume that store_first_byte works according to the specifi-
cation.

Kendrick doubts that Drake’s implementation of store_str_as_int works properly. To check Drake’s
implementation, Kendrick puts a pointer to "12345678" in a0 and 0x10000000 in ai, then calls
store_str_as_int. Assume Kendrick has already allocated sufficient memory at 0x10000000.

Kendrick then executes 1w a0 0(t0), where t0 holds the memory address 0x10000000. After this
instruction, Kendrick finds that a0 holds the number 0x78563412, not 0x12345678.

Q4.13 (4 points) Why is Drake’s implementation of store_str_as_int wrong? Give your answer in at
most 20 words.

Drake forgot that in RISC-V integers are stored in little-
endian order not big endian order.

Midterm Page 15 of 23 CS61C — Spring 2025

This content is protected and may not be shared, uploaded, or distributed.

© 00 N O O WN -

I S e S e T el e
= O W 00 NO O d W N - O

Q5 Caches <>

(13 points)

Q5.1 (3 points) What is the tag-index-offset breakdown for a 32 KiB direct-mapped cache with 64B lines

on a system with a 128KiB address space?

T: 2 bit(s) I: 9 bit(s)

O: 6 bit(s)

bits gives us 2 tag bits.

Solution: With a 128KiB address space (27 bytes), we know that the total number of address bits
should be 17. Given that each line of our direct mapped cache is 64B, we need 6 offset bits to distinguish
them all (26 = 64). For the index, we know that there are (32KiB / 64B =
cache, so we need 9 index bits to index them all. Finally, 17 total address bits - 6 offset bits - 9 index

215

56 = 29) cache lines in our

For Q5.2-Q5.3, the code below is executed on a 32-bit system with a 256B, 4-way set-associative cache

with 8B cache lines and a first-in-first-out (FIFO) replacement policy. Assume the cache is cold prior to

the start of loop 1.

#define STRIDE 2
// register int32_t <var>

void foo(int32_t *arr) {
register int32_t index;

// Assume arr =

/* LOOP 1 =/
0;
for (register int32_t j

index =

0; j <325 j +=
arr[index] = j;
index += STRIDE;

}
/* LOOP 2 */
index = 0;

for (register int32_t j
arr[index] = j + 1;
index += STRIDE;

}

}

0; j <32; j +=

means that <var> is stored in a RISC-V register

0x1000 0020

1) {

A

Q5.2 (4 points) How many cache hits and misses occur during LOOP 2?

Hits: 32

Misses:0

Midterm (Question 5 continues...)

This content is protected and may not be shared, uploaded, or distributed.

Page 16 of 23

CS61C — Spring 2025

(Question 5 continued...)

Solution: Loop 1 fully populates our cache with 32 memory accesses, and our cache contains the
addresses 0x10000020, 0x10000028, 0x10000030, ... , where each cache line contains 2 4-byte
integers. For each access to Loop 2, the cache block containing the desired address is already in our
cache (we are accessing the same addresses as in Loop 1), meaning we have 0 misses and 32 hits.

Common error(s): Forgetting to execute Loop 1 before calculating Loop 2.

Q5.3 (2 points) What is the smallest positive integer value for STRIDE such that every element accessed
in LOOP 1 and LOOP 2 share the same index in the cache?

STRIDE: 16

Solution: We need to choose a stride such that each of the 32 arr[i] accesses maps to the same index
in the cache. We have 3 offset bits (as each cache line is 8B), and we have 3 index bits (as there are
256B / 8B / 4 ways = 8 cache lines). In order to ensure each access maps to the same index, we need a
stride between accesses equal to 0x1000000, or 64. Dividing this by 4 to account for 4 byte integers,
we get 64/4 = 16.

Midterm (Question 5 continues...) Page 17 of 23 CS61C — Spring 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 5 continued...)

Q5.4 (4 points) Our system uses a single L1 cache (L13$). Now, we run two separate programs to measure

the performance of the cache and observe the following results:

Program A Program B
AMAT 200ns AMAT 100ns
L1$ Miss Rate | 35% L1$ Miss Rate | 10%

What is our cache hit time and main memory access time? Assume these times remain consistent

between Program A and Program B.

L1$ Hit Time: 60ns

Main Memory Access Time: 400ns

Solution: Let X = L1$ hit time, and Y = main memory access time.

Program A: 200ns = X + 0.35(Y) Program B: 100ns = X + 0.10(Y)

We can solve this system of equations to get X = 60ns and Y = 400ns.

Midterm Page 18 of 23 CS61C — Spring 2025

This content is protected and may not be shared, uploaded, or distributed.

Q6 Ba-lite-tro wea (8 points)

Noah is playing the game Ba-lite-tro on his laptop. The game stores his score using the IEEE-754 single-
precision floating-point format with 1 sign bit, 8 exponent bits (with a bias of —127), and 23 significand bits.

Q6.1 (2 points) Noah somehow scores —67.125 points?! Convert his score into hexadecimal in this format.

0xC2864000

Solution: 0xC2864000

-67.125 = 0b1000011.001 = 0b1.000011001 *2° Exponent bits - 127 = 6, so the
exponent bits are 133 or 0b10000101. The sign bit is 1 for negative, and the significand
bits are 0b00001100100000000000000. Putting this all together gives Obl 10000101
00001100100000000000000 = Ob1100 0010 1000 0110 0100 0000 0000 0000 or
0xC2864000 in hex.

Common error(s): Improper calculation of exponent bits using the bias, forgetting to omit the
implicit 1.

Noah wants to switch to playing Ba-lite-tro on his phone, but it doesn’t have enough storage! He decides
to modify the game to use a 16-bit floating-point format instead, following the IEEE-754 standard with
1 sign bit, 7 exponent bits (with a bias of -63), and 8 significand bits. This 16-bit format is used to store
his game score.

Q6.2 (3 points) Given this new representation, what is the maximum game score (i.e. largest possible
non-infinite positive number) in this format?

Express your answer first as 16-bit hexadecimal:

Ox7EFF

Now express your answer in terms of powers of two and simplify as much as possible.

264 o 255

Solution: 2764 - 2755

We want the maximum game score without the number becoming infinite or NaN. To do this
we max out the significand bits (all 1s), and max out the exponent by setting it to all 1s with the
exception of the last exponent bit (so it is not classified as NaN). In this format, the number would
have a sign bit = 0 (positive), exponent bits = 0b1111110, and significand bits = 0b11111111.

Finally we can write this value in terms of powers of two. The exponent is equal to 27 — 2% +
(—63) = 128 — 2 — 63 = 63, while the significand is equal to 2 — 27® (remember the implicit
1. and count the bit positions after the decimal point). Finally, multiplying exponent with signif-
icand gives 263 x (2 —278) = 204 — 2755

Midterm (Question 6 continues...) Page 19 of 23 CS61C — Spring 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 6 continued...)

Noah decides to adjust the 16-bit game score format by changing how the 16 bits are allocated to the sign,
exponent, and significand. He decides to reallocate bits to optimize for the largest maximum game score.

While adjusting, Noah still follows the IEEE-754 floating-point number format. This means that:
+ There must be one sign bit

« The exponent bias is —(2"~! — 1), where n is the number of exponent bits

« Infinities, NaN, and denormalized numbers are still encoded as expected.

Q6.3 (3 points) If Noah allocates his 16 bits optimally, what is the largest possible maximum game score?

Express your answer first as 16-bit hexadecimal:

Ox7FFE

Now express your answer in terms of powers of two and simplify as much as possible.

2214—1

Solution: 22~!

The optimal allocation of bits in order to achieve the largest possible maximum game score is 1

sign bit, 15 exponent bits, and 0 significand bits. This means our standard bias is —(2"~! — 1) =
—(25 1 —1) =—(2" —1).

Similar to the previous problem, in order to max out our exponent we set all bits equal to 1 with
the exception of the last bit to get 0x7FFE. This makes our exponent bits 0b111 1111 1111
1110, or 2!% — 2!, 50 our overall exponent = exponent bits + bias = 21> — 21 — (214 —1) = 214 —
1. Finally, the value of our number is 2" exponent, or 9241,

Common error(s): Forgetting the implicit 1. for normalized numbers, setting the exponent to be
all 1s, writing just the exponent instead of 2" exponent.

Midterm Page 20 of 23 CS61C — Spring 2025

This content is protected and may not be shared, uploaded, or distributed.

Q7 Boolean Algebra (3) & (9 points)

NOT (z), AND (+), OR (+) each count as one operator. We will assume standard C operator precedence,
so use parentheses when uncertain.

Your answers may consist of the following operators and symbols:

Operators Symbols
NOT [AND | OR | Inputs | Constants | Parentheses
T |z-yl|lxe+y|AB,C 0,1 0

Q7.1 (4 points) Simplify the following boolean algebra expression
(A+C)- (A+B)-C

For full credit, reduce the above to an expression that uses at most 3 operators.

ABC

Solution:

=(A+C)(A+B)C

[6) >0

G_out

Midterm (Question 7 continues...) Page 21 of 23 CS61C — Spring 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 7 continued...)

For full credit, reduce the circuit above to an expression that uses at most 3 operators.

A+B+C

Solution:

Gow =AB+ (BC+BC)C
=A+B+ (BCC+BCC)
=A+B+ (BC)
=A+B(1+C)+ (BC)
=A+B+BC+BC
=A+B+C(B+B)

=A+B+C

Midterm Page 22 of 23 CS61C — Spring 2025

This content is protected and may not be shared, uploaded, or distributed.

Q8 Eggcellence Q (0 points)

These questions will not be assigned credit. Feel free to leave them blank.

Q8.1 Given an egg carton with 12 eggs, what are the first two eggs you pick? (Fill in the square with a 1
for the first egg, and a 2 for the second egg)

LID

..and Why?

Q8.2 If there’s anything else you want us to know, or you feel like there was an ambiguity in the exam,
please put it in the box below.

For ambiguities, you must qualify your answer and provide an answer for both interpretations. For
example, “if the question is asking about A, then my answer is X, but if the question is asking about
B, then my answer is Y. You will only receive credit if it is a genuine ambiguity and both of your
answers are correct. We will only look at ambiguities if you request a regrade.

Alternatively, draw something egg-cellent!

Midterm Page 23 of 23 CS61C — Spring 2025

This content is protected and may not be shared, uploaded, or distributed.

	Potpourri 🍲
	Conditional Eggsecution 🥚
	Generic Linked Lists 🔗
	Not Like Us 🗣️
	Caches 💸
	Ba-lite-tro ♥️♣️♦️♠️
	Boolean Algebra 🙆🙅
	Eggcellence 🍳

