
CS61C Precheck: Number Representation
Spring 2026 Discussion 1

1 Conceptual Introduction
Since computers typically use binary internally whereas we as humans tend to use base 10, we
have come up with some representation schemes to easily convert between our human notion of
numbers and the computer’s. Here are some of the most common ones:

Unsigned Numbers
If we have an 𝑛-digit unsigned numeral 𝑑𝑛−1𝑑𝑛−2⋯𝑑0 in radix (or base) 𝑟, then the value of that
numeral is

∑
𝑛−1

𝑖=0
𝑟𝑖𝑑𝑖,

which is just fancy notation to say that instead of a 10′s or 100′s place we have an 𝑟’s or 𝑟2’s place.
For the three radices binary, decimal, and hex, we just let 𝑟 be 2, 10, and 16, respectively.

Signed Numbers
Unsigned binary numbers work for natural numbers, but many calculations use negative numbers
as well. To deal with this, a number of different schemes have been used to represent signed
numbers. Here are two common schemes:

Two’s Complement:
(a) We can write the value of an 𝑛-digit two’s complement number as

∑
𝑛−2

𝑖=0
2𝑖𝑑𝑖 − 2𝑛−1𝑑𝑛−1.

(b) Negative numbers will have a 1 as their most significant bit (MSB). Plugging in 𝑑𝑛−1 = 1 to
the formula above gets us

∑
𝑛−2

𝑖=0
2𝑖𝑑𝑖 − 2𝑛−1.

(c) Meanwhile, positive numbers will have a 0 as their MSB. Plugging in 𝑑𝑛−1 = 0 gets us

∑
𝑛−2

𝑖=0
2𝑖𝑑𝑖,

which is very similar to unsigned numbers.

(d) To negate a two’s complement number: flip all the bits and add 1.

(e) Addition is exactly the same as with an unsigned number.

(f) Only one 0, and it’s located at 0b0.

1

2 Precheck: Number Representation

Biased Representation:
(a) The number line is shifted so that the smallest number we want to be representable would

be 0b0...0.

(b) To find out what the represented number is, read the representation as if it was an unsigned
number, then add the bias.

(c) We can shift to any arbitrary bias we want to suit our needs. To represent (nearly) as much
negative numbers as positive, a commonly-used bias for 𝑁 bits is −(2𝑁−1 − 1).

2 Precheck: Number Representation
2.1 Depending on the context, the same sequence of bits may represent different things.

True. The same bits can be interpreted in many different ways! The bits can represent anything
from an unsigned number to a signed number or even, as we will cover later, a program. It is all
dependent on its agreed upon interpretation.

2.2 It is possible to get an overflow error in Two’s Complement when adding numbers of opposite
signs.

False. Overflow errors only occur when the correct result of the addition falls outside the range
of [−2𝑛−1, 2𝑛−1 − 1]. Adding numbers of opposite signs will not result in numbers outside of
this range.

2.3 If you interpret an 𝑛-bit Two’s complement number as an unsigned number, negative numbers
would be smaller than positive numbers.

False. In Two’s Complement, the MSB is always 1 for a negative number. This means EVERY
negative number in Two’s Complement, when converted to unsigned, will be larger than the
positive numbers.

2.4 If you interpret an 𝑛-bit Bias notation number as an unsigned number (assume there are negative
numbers for the given bias), negative numbers would be smaller than positive numbers.

True. In bias notation, we add a bias to the unsigned interpretation to create the value. Regardless
of where we ‘shift’ the range of representable values, the negative numbers, when converted to
unsigned, will always stay smaller than the positive numbers. This is unlike Two’s Complement
(see description above).

2.5 We can represent fractions and decimals in our given number representation formats (unsigned,
biased, and Two’s Complement).

False. Our current representation formats has a major limitation; we can only represent and do
arithmetic with integers. To successfully represent fractional values as well as numbers with
extremely high magnitude beyond our current boundaries, we need another representation
format.

2

	Conceptual Introduction
	Unsigned Numbers
	Signed Numbers
	Two's Complement:
	Biased Representation:

	Precheck: Number Representation

