
CS61C Precheck: C, Floating Point, IEC
Spring 2026 Discussion 3

1 Discussion Pre-Check
1.1 True or False: The idea of floating point is to use the ability to move the radix (decimal) point

wherever to represent a large range of real numbers as exact as possible.

True. Floating point:
• Provides support for a wide range of values. (Both very small and very large)
• Helps programmers deal with errors in real arithmetic because floating point can represent
+∞, -∞, NaN (Not a Number)

• Keeps high precision. Recall that precision is a count of the number of bits in a computer word
used to represent a value. IEEE 754 allocates a majority of bits for the significand, allowing for
the use of a combination of negative powers of two to represent fractions.

1.2 True or False: Floating Point and Two’s Complement can represent the same total amount of
numbers (any reals, integer, etc.) given the same number of bits.

False. Floating Point can represent infinities as well as NaNs, so the total amount of representable
numbers is lower than Two’s Complement, where every bit combination maps to a unique
integer value.

1.3 True or False: The distance between floating point numbers increases as the absolute value of
the numbers increase.

True. The uneven spacing is due to the exponent representation of floating point numbers. There
are a fixed number of bits in the significand. In IEEE 32-bit storage there are 23 bits for the
significand, which means the LSB represents 2−23 times 2 to the exponent. For example, if the
exponent is zero (after allowing for the offset) the difference between two neighboring floats
will be 2−23. If the exponent is 8, the difference between two neighboring floats will be 2−15

because the mantissa is multiplied by 2⁸. Limited precision makes binary floating-point numbers
discontinuous; there are gaps between them.

1.4 True or False: Floating Point addition is associative.

False. Because of rounding errors, you can find Big and Small numbers such that: (Small +
Big) + Big != Small + (Big + Big)

FP approximates results because it only has 23 bits for the significand.

1.5 Why does normalized scientific notation always start with a 1 in base-2?

A non-zero digit is required prior to the radix in scientific notation, and since the only non-zero
digit in base-2 is 1, the normalized value will always start with a 1.

1



2 Precheck: C, Floating Point, IEC

1.6 Convert the following numbers into the quantity of bytes each term represents (you may leave
your answer in terms of powers of 2). (See precheck section on IEC Prefixes for assistance)

a) 4 KiB

One KiB is 210 and 4 = 22 so 4 KiB = 22 × 210 = 212 bytes
b) 2 MiB

One MiB is 220 and 2 = 21 so 2 MiB = 2 × 220 = 221 bytes
c) 8 Kib

Notice how the unit is Kib (Kibibits) and not KiB (Kibibytes). One Kib is 2^(10) bits so 8 Kib
= 23 × 210 = 213 bits. Because there are 8 = 23 bits in one byte, we divide our answer to get
8 Kib = 210 bytes

(Note that 8 Kib = 1 KiB)
d) 24 GiB

We can factor 24 = 4 ∗ 6 = 22 ∗ 2 ∗ 3 = 23 ∗ 3. One GiB = 230 so we can write 24 GiB = 23 ∗
3 × 230 = 3 × 233 bytes (alternatively, just 24 × 230 bytes).

e) 19 TiB

Note that 19 cannot be factored or easily representable in powers of 2. Following the same
process as above, we can simplify to 19 TiB = 19 × 240 bytes ≈ 19 trillion bytes

2



Precheck: C, Floating Point, IEC 3

2 Floating Point
The IEEE 754 standard defines a binary representation for floating point values using three fields.

• The sign determines the sign of the number (0 for positive, 1 for negative).
• The exponent is in biased notation. For instance, the bias is −127, which comes from -(2{8−1} −

1) for single-precision floating point numbers. For double-precision floating point numbers, the
bias is −1023

• The significand (or mantissa) is akin to unsigned integers but used to store a fraction instead of
an integer and refers to the bits to the right of the leading “1” when normalized. For example,
the significand of 1.010011 is 010011.

The table below shows the bit breakdown for the single-precision (32-bit) representation. The
leftmost bit is the MSB, and the rightmost bit is the LSB.

For normalized floats:

Value = (−1)Sign × 2Exp+Bias × 1.Significand2

For denormalized floats:

Value = (−1)Sign × 2Exp+Bias+1 × 0.Significand2

Exponent (Pre-bias) Significand Meaning
0 Anything Denorm

1-254 Anything Normal
255 0 ± Infinity
255 Nonzero NaN

Note that in the above table, our exponent has values from 0 to 255. When translating between
binary and decimal floating point values, we must remember that there is a bias for the exponent.

3



4 Precheck: C, Floating Point, IEC

3 IEC Prefixes and Symbols
IEC Prefix multipliers are a set of standard units used to represent powers of 2 and are often used
in discussion about caches and memory. The Base-2 (bi: “bee”) IEC standard prefixes represent
binary quantities officially up to exbi (“exbee”). Their comparison to SI units are shown below:

Prefix (Abbr) SI Size
Kilo (k) 103 = 1, 000
Mega (M) 106 = 1, 000, 000
Giga (G) 109 = 1, 000, 000, 000
Tera (T) 1012 = 1, 000, 000, 000, 000
Peta (P) 1015 = 1, 000, 000, 000, 000, 000
Exa (E) 1018 = 1, 000, 000, 000, 000, 000, 000
Zetta (Z) 1021 = 1, 000, 000, 000, 000, 000, 000, 000
Yotta (Y) 1024 = 1, 000, 000, 000, 000, 000, 000, 000, 000

IEC (Abbr) IEC Factor
Kibi (Ki) 210 = 1, 024
Mebi (Mi) 220 = 1, 048, 576
Gibi (Gi) 230 = 1, 073, 741, 824
Tebi (Ti) 240 = 1, 099, 511, 627, 776
Pebi (Pi) 250 = 1, 125, 899, 906, 842, 624
Exbi (Ei) 260 = 1, 152, 921, 504, 606, 846, 976
Zebi (Zi) 270 = 1, 180, 591, 620, 717, 411, 303, 424
Yobi (Yi) 280 = 1, 208, 925, 819, 614, 629, 174, 706, 176

4


	Discussion Pre-Check
	Floating Point
	IEC Prefixes and Symbols

