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1 Discussion Pre-Check

True or False: The idea of floating point is to use the ability to move the radix (decimal) point
wherever to represent a large range of real numbers as exact as possible.

True. Floating point:

« Provides support for a wide range of values. (Both very small and very large)

« Helps programmers deal with errors in real arithmetic because floating point can represent
+00, -00, NalN (Not a Number)

« Keeps high precision. Recall that precision is a count of the number of bits in a computer word
used to represent a value. IEEE 754 allocates a majority of bits for the significand, allowing for
the use of a combination of negative powers of two to represent fractions.

True or False: Floating Point and Two’s Complement can represent the same total amount of
numbers (any reals, integer, etc.) given the same number of bits.

False. Floating Point can represent infinities as well as NaNs, so the total amount of representable
numbers is lower than Two’s Complement, where every bit combination maps to a unique
integer value.

True or False: The distance between floating point numbers increases as the absolute value of
the numbers increase.

True. The uneven spacing is due to the exponent representation of floating point numbers. There
are a fixed number of bits in the significand. In IEEE 32-bit storage there are 23 bits for the
significand, which means the LSB represents 272 times 2 to the exponent. For example, if the
exponent is zero (after allowing for the offset) the difference between two neighboring floats
will be 27%. If the exponent is 8, the difference between two neighboring floats will be 271
because the mantissa is multiplied by 2°. Limited precision makes binary floating-point numbers
discontinuous; there are gaps between them.

True or False: Floating Point addition is associative.

False. Because of rounding errors, you can find Big and Small numbers such that: (Small +
Big) + Big != Small + (Big + Big)

FP approximates results because it only has 23 bits for the significand.
Why does normalized scientific notation always start with a 1 in base-2?

A non-zero digit is required prior to the radix in scientific notation, and since the only non-zero
digit in base-2 is 1, the normalized value will always start with a 1.
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Convert the following numbers into the quantity of bytes each term represents (you may leave
your answer in terms of powers of 2). (See precheck section on IEC Prefixes for assistance)

a) 4KiB

One KiB is 2!° and 4 = 22 s0 4 KiB = 22 x 2! = 2!2 bytes
b) 2 MiB

One MiB is 2% and 2 = 2! so 2 MiB = 2 x 2% = 22! bytes
¢) 8Kib

Notice how the unit is Kib (Kibibits) and not KiB (Kibibytes). One Kib is 2/(10) bits so 8 Kib
=23 x 210 = 213 bits. Because there are 8 = 23 bits in one byte, we divide our answer to get
8 Kib = 210 bytes
(Note that 8 Kib = 1 KiB)

d) 24 GiB

We can factor 24 = 4 % 6 = 22 x 2 x 3 = 23 % 3. One GiB = 23° so we can write 24 GiB = 23
3 x 239 = 3 x 2% bytes (alternatively, just 24 x 23 bytes).
¢) 19 TiB

Note that 19 cannot be factored or easily representable in powers of 2. Following the same
process as above, we can simplify to 19 TiB = 19 x 20 bytes ~ 19 trillion bytes
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2 Floating Point
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The IEEE 754 standard defines a binary representation for floating point values using three fields.

« The sign determines the sign of the number (0 for positive, 1 for negative).

» The exponentis in biased notation. For instance, the bias is 127, which comes from -(2{

8—1} _

1) for single-precision floating point numbers. For double-precision floating point numbers, the

bias is -1023

« The significand (or mantissa) is akin to unsigned integers but used to store a fraction instead of

an integer and refers to the bits to the right of the leading “1” when normalized. For example,

the significand of 1.010011 is 010011.

The table below shows the bit breakdown for the single-precision (32-bit) representation. The
leftmost bit is the MSB, and the rightmost bit is the LSB.
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L Mantissa field

Exponent field, stored as an 8-bit biased number
00000000 = Denormalized number

11111111 = NaN (nonzero mantissa) or Inﬁﬂirvv (zero mantissa)

For normalized floats:

Sign bit
0 = Positive
1 = Negative

Value = (—1)5" x 28xp+Bias 1 Gignificand,

For denormalized floats:

Value = (—1)5n x 2Exp+Biastl () Sjonificand,

Exponent (Pre-bias) | Significand | Meaning
0 Anything | Denorm
1-254 Anything Normal
255 0 + Infinity
255 Nonzero NaN

Note that in the above table, our exponent has values from 0 to 2565. When translating between
binary and decimal floating point values, we must remember that there is a bias for the exponent.
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3 IEC PTGEXGS and Sym]ools

IEC Prefix multipliers are a set of standard units used to represent powers of 2 and are often used
in discussion about caches and memory. The Base-2 (bi: “bee”) IEC standard prefixes represent
binary quantities officially up to exbi (“exbee”). Their comparison to SI units are shown below:

Prefix (Abbr) SI Size

Kilo (k) 103 = 1,000

Mega (M) 108 = 1,000, 000

Giga (G) 10° = 1,000, 000,000

Tera (T) 10'2 = 1,000, 000, 000, 000

Peta (P) 10% = 1,000, 000, 000, 000, 000

Exa (E) 10'® = 1,000, 000, 000, 000, 000, 000

Zetta (Z) 10%' = 1,000, 000, 000, 000, 000, 000, 000
Yotta (Y) 10%* = 1,000, 000, 000, 000, 000, 000, 000, 000
IEC (Abbr) IEC Factor

Kibi (Ki) 210 = 1,024

Mebi (Mi) 220 = 1,048,576

Gibi (Gi) 230 = 1,073,741,824

Tebi (Ti) 240 = 1,099, 511, 627,776

Pebi (Pi) 250 = 1,125,899, 906, 842, 624

Exbi (Ei) 200 = 1,152,921, 504, 606, 846, 976

Zebi (Zi) 270 = 1,180, 591, 620, 717, 411, 303, 424
Yobi (Yi) 280 = 1,208,925, 819,614,629, 174,706, 176
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