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| Floating Point

Convert the following single-precision floating point numbers from hexadecimal to decimal or
from decimal to hexadecimal using the IEEE 754 Floating Point Standard. You may leave your
answer as an expression.

a) 8.25
Answer: 0x41040000

First, we write 8.25 into binary. Splitting 8. 25 into its integer and decimal portions, we can
determine that 8 will be encoded in binary as 1000 and 0.25 will be .01 (the 1 corresponds
to the 272 place). So, 8.25 = 1000.01. In normalized form, we get 1.00001, x 23.

Our floating point representation has three parts: the sign, exponent and significand. Our
number is positive, so our sign bit —1° will be 0. Solving for the significand, we know that
our number will have a non-zero exponent. This is a normalized number, so we will have a
leading 1 for our mantissa. Thus, our significand will be the digits after the decimal point,
00001000. Finally, we can solve for the exponent. The power in the normalized form is 3,
and we must use the bias in reverse to find what exponent we encode in binary. 3 subtracted
by a bias of -127 results in 130, so our exponent is 0b10000010. Our final binary number
concatenated is 0 100 0001 O 000 0100 0000 0000 0000 0000, or 0x41040000.

b) 39.5625

Answer: 0x421E4000

Writing 39.5625 in binary results in the bits 100111.1001. In normalized form, we
get 1.001111001 x 25. We can find our floating point exponent with 2% = 26 + bias —
gexp —127 exp = 132 = 0b10000100. From the normalized form, our significand is
0b00111100100 and our sign bit is zero. Our final binary number is Ob0 100 0010 0001
1110 0100 0000 0000 0000 which is 0x421E4000.

¢) 0x00000F00
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Answer: (2712 42713 4 2711 4 2715) 4 27126

For 0x00000F00, splitting up the hexadecimal gives us a sign bit and exponent bit of 0, and
a significand of Ob 000 0000 0000 1111 0000 0000. Since the exponents bits are 0, we
know that this is a denormalized positive number. We can find out the true power by adding
the bias + 1 to get a power of -126.

Then, we can evaluate the mantissa by inspecting the bits that are 1 to the right of the decimal
point, and finding the corresponding negative power of two. This results in the mantissa
evaluated as 2712 + 2713 4 271 4 2715 Combining these get the extremely small number
(_1)0 * 2—126 * (2—12 + 2—13 + 2—14 + 2—15)

d) o

Answer: 0x00000000 or 0x80000000

To represent zero in floating point, the significand will be zero but we need to set the correct
exponent. Recall that any non-zero exponent will indicate a normalized float which means
the significand has a leading 1. Zero’s binary representation does not have a leading 1, so
we need an exponent of zero to indicate a denormalized float which implies a leading zero in
front of the significand. The remaining sign bit determines the sign of zero, allowing positive
zero to be represented as 0x00000000 and negative zero as 0x80000000.

e) OxFF94BEEF

Answer: NaN

Certain exponent fields are reserved for representing special values. Floating point repre-
sentations with exponents of 255 and a zero significand are reserved for + co, and exponents
of 255 with a nonzero significand are reserved for representations of NaN. Deconstructing
the fields of this number gives an exponent of Ob11111111 = 255 and a nonzero signif-
icand which indicates that this represents NaN. Note that there are many possible ways to
represent NaN.



C, Floating Point, IEC 3

Answer: 0x7F800000

Certain exponent fields are reserved for representing special values. Floating point repre-
sentations with exponents of 255 and a zero significand are reserved for + co, and exponents
of 255 with a nonzero significand are reserved for represntations of NaN. Because we need
to represent positive infinity, we use a 0 for the sign bit, 255 for the exponent field, and a zero
significand giving 0b01111111100000000000000000000000 or 0x7F800000 for positive
co. Note that -oo would be 0xFF800000.

g) 1/3

Answer: N/A - impossible to represent in single-precision floating point, we can only
approximate it

2 More Floating Point

As we saw above, not every number can be represented perfectly using floating point. For this
question, we will only look at positive numbers.

What is the next smallest number larger than 2 that can be represented completely?

Answer: 2 + 2722

First,we start at the number 2 and write it in the normalized form. Then we increment the
number by the smallest amount possible, which is the same as incrementing the significand by
1 at the rightmost location, which adds 2722,

Normalized: 2 = 10.000... = 1.000...00 x 21
Increment: 2 = (1.000...00 + 27%) x 2 = (14 27%) x 2 =2+ 272

What is the next smallest number larger than 4 that can be represented completely?

Answer: 4 + 2721

Similarly, we write 4 in its normalized form, and increment it by the smallest amount possible.
This is the same as incrementing the significand by 1 at the rightmost location.

Normalized: 4 = 100.000... = 1.000...00 x 22
Increment: (1.000...00 + 273) x 22 = (1 4+278) x4 =4+4272!

What is the largest odd number that we can represent? Hint: at what power can we only represent
even numbers?
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Answer: 224 — 1

To find the largest odd number we can represent, we want to find when odd numbers will stop
appearing. Because we are always multiplying the significand by a power of 2%, we will only
be able to represent even numbers when the exponent grows large enough. In particular, odd
numbers will stop appearing when the significand’s LSB has a step size (distance between each
successive number) of 2, so the largest odd number will be the first number with a step size of
2, subtracted by 1. After this number, only even numbers can be represented in floating point.

We can think of each binary digit in the significant as corresponding to a different power of 2
to get to a final sum. For example, 0b1011 can be evaluated as 23 + 21 4+ 20 where the MSB is
the 3rd bit and corresponds to 23 and the LSB is the Oth bit at 2°.

We want our LSB to correspond to 2, so by counting the number of mantissa bits (23) and
including the implicit 1, we get a total exponent of 24. The smallest number with this power
would have a mantissa of 00..00, so after taking account of the implicit 1 and subtracting, this
gives 224 — 1

3 O Generics

True or False: In C, it is possible to directly dereference a void * pointer, e.g.

. = *ptr;

False. To dereference a pointer, we must know the number of bytes to access from memory at
compile time. A void * pointer contains the address for an arbitrary region of memory without
a known size, so they cannot be dereferenced — they must be typecast beforehand (e.g. ... =
*((int *) ptr))

Generic functions (i.e., generics) in C use void * pointers to operate on memory without the
restriction of types. Generic pointers do not support dereferencing, as the number of bytes to
access from memory is not known at compile-time. They instead use byte handling functions
such as memcpy and memmove.

Implement rotate, which will prompt the following program to generate the provided output.

int main(int argc, char *argv([]) {
int array[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
print_int_array(array, 10);
rotate(array, array + 5, array + 10);
print_int_array(array, 10);
rotate(array, array + 1, array + 10);
print_int_array(array, 10);
rotate(array + 4, array + 5, array + 6);
print_int_array(array, 10);
return O;

}

Output:
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$ ./rotate

Array: [1, 2,
Array: [6, 7,
Array: [7, 8,
Array: [7, 8,

, 4, 5, 6, 7, 8, 9, 10]
, 9, 10, 1, 2, 3, 4, 5]
, 10, 1, 2, 3, 4, 5, 6]
, 10, 2, 1, 3, 4, 5, 6]

©O© O 00 W

void rotate(void *front, void *separator, void *end) {
size_t width = (char *) end - (char *) front;
size_t prefix_width = (char *) separator - (char *) front;
size_t suffix_width = width - prefix_width;
char temp[prefix_width];
memcpy (temp, front, prefix_width);
memmove (front, separator, suffix_width);
memcpy((char *) end - prefix_width, temp, prefix_width);
}

See slides provided under “Discussion Resources” for a visual walkthrough of the solution.
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4 TEC Prefixes and Symlools

Convert the following quantities into the number of bytes each term represents (you may leave

your answers in terms of powers of 2).
a) 1 KiB
Answer: 2! Bytes

We can use the 61C reference card (or
the precheck worksheet) for the values
of the SI prefixes. A Kibi- is 21?, so 1 KiB
= 210 bytes.

c) 16 Gib
Answer: 23! Bytes

16 Gib = 2% x 230 = 234 Notice that we
have 16 Gib which is 16 Gibibits — one
byte is 8 = 23 bits, so 234 / 23 =231
Bytes

b) 32 MiB

225

Answer: Bytes

We know that one MiB = 220 Bytes,
so we have 32 x 220 = 25 x 220 = 2%
bytes.

d) 20 KiB
Answer: 5 x 2'2 Bytes

We can factor 20 into 4 x 5 for a solu-
tion in terms of powers of 2. 20 KiB =
(4x5) x210=(22x5)x 219 =5x
212 Bytes.

Rewrite the following quantities using IEC Prefixes.

a) 2048 B
Answer: 2 KiB
2048 = 21 = 210H1

=21 x 210 = 2 KjiB.

b) 23 B
Answer: 256 GiB

238 can be rewritten as 23018 =
28 x 230 = 256 x 2% = 256
GiB.
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