C561C RISC-V
Spring 2026 Discussion 4

1 RISC-V Instructions

Assume we have an array in memory that contains int *arr = {1,2,3,4,5,6,0%}. Let register
s0 hold the address of the element at index 0 in arr. You may assume integers are four bytes
and our values are word-aligned. What do the following snippets of RISC-V code do? Assume

that all the instructions are run one after the other in the same context.
(@) 1w t0, 12(s0)

Sets t0 equal to arr [3]
(b) sw t0 16(s0)

Stores t0 into arr [4]

(c) sl1li t1, t0, 2
add t2, sO, ti1
lw t3, 0(t2)
addi t3, t3, 1
sw t3, 0(t2)
Increments arr [4] by 1.
1st line sets t1 = 16
2nd line adds it to sO so that it now points at arr [4]

3rd-5th line loads the value at arr [4], increments by one, and stores it back

(d) 1w to, 0(s0)
xori t0, t0, OxFFF
addi tO0, tO, 1

Sets tO to -1 * arr[0]

? Lost in Translation

Translate the code verbatim between C and RISC-V. The comments above the code indicate which
registers to store the variables.



RISC-V

C RISC-V

// sO -> a addi sO, x0, 4
// s1 -> Db addi s1, x0, 5
// s2 -> c addi s2, x0, 6
// s3 -> z add s3, s0, si

int a =4, b=5, ¢c = 6;

int z=a+b+ c + 10;

add s3, s3, s2
addi s3, s3, 10

// int *p = intArr;

sw x0, 0(s0)

// sO -> p; addi s1, x0, 2

// sl -> a; sw s1, 4(s0)

*p = 0; slli tO0, si1, 2

int a = 2; add tO0, tO0, sO

pl1]l = plal = a; sw s1, 0(t0)

// sO -> a, start:

// s1 -> Db addi sO, x0, 5

int a = 5; addi s1, x0, 10

int b = 10; add tO, sO, sO

if (a + a ==b) { bne t0, si1, else
a = 0; add sO, x0, xO

} else { jal x0, exit
b=a-1; else:

} addi s1, s0, -1

exit:

// Compute s1 = 2730
int sO = 0;
1;

int si

for (; sO '= 30; sO += 1) {

sl *x= 2;
}

start:
addi sO, x0, O
addi s1, x0, 1
addi tO0, x0, 30
loop:
beq s0, t0, exit
slli s1, si1, 1
addi sO, sO, 1
jal x0, loop
exit:




RISC-V 3

C RISC-V

// sO ->n start:

// s1 -> sum addi s1, x0, O
for (int sum = 0; n > O0; n--) { loop:

sum += n; beq sO0, x0, exit
¥ add s1, s1, sO

addi sO, sO, -1

jal x0, loop
exit:

3 RISC-V Memory ACCGSS

For Q3.1 — Q3.2, use the instructions and memory to figure out what the code does. Recall that
RISC-V is little-endian and byte addressable. For any unknown instructions, use the CS 61C
reference card!

Fill in the registers with the values they contain after the code finishes executing.

1i t0 OxOOFF0000 0 0x00FF0004 OxFFFFFFFF
1w t1 0(t0)
addi t0 t0 4 t1 36 0x00FF0004 | 0x000C561C
1h t2 2(t0) x X
0x00FF0000 36
Llw s0 0(t1) £2 0x00FF0006
1b s1 3(t2)
<0 0xDEADB33F 0x00000036 | OxFDFDFDFD
s1 OxFFFFFFC5 0x00000024 | OxDEADB33F
0x0000000C | 0xC5161C00
0x00000000

e t0: Line 3 adds 4 to the initial address.

 t1:Line 2 loads the 4-byte word from address 0xOOFF0000.

+ t2: Line 4 loads two bytes starting at the address 0xOOFF0004 + 2 = 0xOOFF0006. This

returns 0x000C

+ s0: Line 5 loads the word starting at address 36 = 0x24 which is 0xDEADB33F.
+ s1: Line 6 loads the MSB starting of the 4-byte word at address 0xC. The value is 0xC5 which

is sign-extended to OxFFFFFFC5.



https://cs61c.org/fa25/pdfs/resources/reference-card.pdf
https://cs61c.org/fa25/pdfs/resources/reference-card.pdf

4 RISC-V

Fill in the memory diagram and t3 register with the values contained in them after the code
finishes executing. The values in the t0, t1, and t2 registers at the start of program execution
have been provided to you. Assume that all memory starts out initialized to zeros.

sw t0 0(t1) 0 OxABADCAFS OxFFFFFFFF | 0x00000000

addi t0 t0 4

h t1 2(t0

S (£0) t1 0xF0120504 0xF0120504 | 0xABADCAFS

sh t2 0(t0)

1w £3 0(t1) £2 0xBEEFDABO

sb t1 1(t3) 0xBEEFDABO | 0x00000000

sb t2 3(t3)

£3 0xABADCAFS

0xABADCAFC | 0x0504DABO
0xABADCAF8 | 0xB0000400
0x00000000 | 0x00000000




	RISC-V Instructions
	Lost in Translation
	RISC-V Memory Access

