
CS61C RISC-V
Spring 2026 Discussion 4

1 RISC-V Instructions
1.1 Assume we have an array in memory that contains int *arr = {1,2,3,4,5,6,0}. Let register

s0 hold the address of the element at index 0 in arr. You may assume integers are four bytes
and our values are word-aligned. What do the following snippets of RISC-V code do? Assume
that all the instructions are run one after the other in the same context.

(a) lw t0, 12(s0)

(b) sw t0 16(s0)

(c) slli t1, t0, 2
add t2, s0, t1
lw t3, 0(t2)
addi t3, t3, 1
sw t3, 0(t2)

(d) lw t0, 0(s0)
xori t0, t0, 0xFFF
addi t0, t0, 1

1

2 RISC-V

2 Lost in Translation
2.1 Translate the code verbatim between C and RISC-V. The comments above the code indicate which

registers to store the variables.

C RISC-V

// s0 -> a
// s1 -> b
// s2 -> c
// s3 -> z
int a = 4, b = 5, c = 6;
int z = a + b + c + 10;

// int *p = intArr;
// s0 -> p;
// s1 -> a;
*p = 0;
int a = 2;
p[1] = p[a] = a;

// s0 -> a,
// s1 -> b
int a = 5;
int b = 10;
if (a + a == b) {
 a = 0;
} else {
 b = a - 1;
}

// Compute s1 = 2^30
int s0 = 0;
int s1 = 1;
for (; s0 != 30; s0 += 1) {
 s1 *= 2;
}

// s0 -> n
// s1 -> sum
for (int sum = 0; n > 0; n--) {
 sum += n;
}

2

RISC-V 3

3 RISC-V Memory Access
For Q3.1 – Q3.2, use the instructions and memory to figure out what the code does. Recall that
RISC-V is little-endian and byte addressable. For any unknown instructions, use the CS 61C
reference card!

3.1 Fill in the registers with the values they contain after the code finishes executing.

li t0 0x00FF0000
lw t1 0(t0)
addi t0 t0 4
lh t2 2(t0)
lw s0 0(t1)
lb s1 3(t2)

t0

t1

t2

s0

s1

0xFFFFFFFF
...

0x00FF0004 0x000C561C
0x00FF0000 36

...
0x00000036 0xFDFDFDFD

...
0x00000024 0xDEADB33F

...
0x0000000C 0xC5161C00

...
0x00000000

3

https://cs61c.org/fa25/pdfs/resources/reference-card.pdf
https://cs61c.org/fa25/pdfs/resources/reference-card.pdf

4 RISC-V

3.2 Fill in the memory diagram and t3 register with the values contained in them after the code
finishes executing. The values in the t0, t1, and t2 registers at the start of program execution
have been provided to you. Assume that all memory starts out initialized to zeros.

sw t0 0(t1)
addi t0 t0 4
sh t1 2(t0)
sh t2 0(t0)
lw t3 0(t1)
sb t1 1(t3)
sb t2 3(t3)

t0 0xABADCAF8

t1 0xF0120504

t2 0xBEEFDAB0

t3

0xFFFFFFFF 0x00000000
...

0xF0120504
...

0xBEEFDAB0
...

0xABADCAFC
0xABADCAF8

...
0x00000000 0x00000000

4

	RISC-V Instructions
	Lost in Translation
	RISC-V Memory Access

