C561C RISC-V
Spl‘ing 2026 Discussion 4

1 RISC-V Instructions

Assume we have an array in memory that contains int *arr = {1,2,3,4,5,6,0%}. Let register
s0 hold the address of the element at index 0 in arr. You may assume integers are four bytes
and our values are word-aligned. What do the following snippets of RISC-V code do? Assume

that all the instructions are run one after the other in the same context.

(a) 1w tO0, 12(s0)

(b) sw t0 16(s0)

(c) slli t1, tO, 2
add t2, sO, ti1
1w t3, 0(t2)
addi t3, t3, 1
sw t3, 0(t2)

(d) 1w to, 0(s0)
xori t0, tO, OxFFF
addi tO, tO, 1



2 RISC-V

? Lost in Translation

Translate the code verbatim between C and RISC-V. The comments above the code indicate which
registers to store the variables.

C RISC-V
// sO -> a
// s1 -> b
// s2 -> ¢
// 83 -> z

int a =4, b=5, ¢c = 6;
a+b+c+ 10;

int z

// int *p = intArr;

// sO -> p;

// s1 -> a;

*p = 0;

int a = 2;

pl1] = plal = a;

// sO -> a,

// s1 -> D

int a = 5;

int b = 10;

if (a+a==">b) {
a = 0;

} else {
b=a-1;

}

// Compute s1 = 2730

int sO0 = 0;

int s1 = 1;

for (; sO '= 30; sO += 1) {
sl *= 2;

}

// sO ->n

// s1 -> sum
for (int sum = 0; n > 0; n--) {
sum += n;




3 RISC-V Memory ACCGSS

RISC-V

3

For Q3.1 — Q3.2, use the instructions and memory to figure out what the code does. Recall that
RISC-V is little-endian and byte addressable. For any unknown instructions, use the CS 61C

reference card!

Fill in the registers with the values they contain after the code finishes executing.

1i t0 0xOOFF0000
1w t1 0(t0)

addi t0 tO0 4

1h t2 2(t0)

1w sO 0(t1)

1b s1 3(t2)

t0

t1

t2

sO

si

OxFFFFFFFF

0x00FF0004
0x00FF0000

0x00000036

0x00000024

0x0000000C

0x00000000

0x000C561C

36

OxFDFDFDFD

OxDEADB33F

0xC5161C00



https://cs61c.org/fa25/pdfs/resources/reference-card.pdf
https://cs61c.org/fa25/pdfs/resources/reference-card.pdf

4 RISC-V

Fill in the memory diagram and t3 register with the values contained in them after the code
finishes executing. The values in the t0, t1, and t2 registers at the start of program execution
have been provided to you. Assume that all memory starts out initialized to zeros.

sw t0 0(t1) 0 OxABADCAFS OxFFFFFFFF | 0x00000000
addi tO tO 4
sh t1 2(t0)
t1 0xF0120504
sh 2 0(t0) 0xF0120504
1w £3 0(t1) £2 0xBEEFDABO
sb t1 1(t3) OxBEEFDABO
sb t2 3(t3)
t3
OxABADCAFC
OxABADCAF8
0x00000000 | 0x00000000




	RISC-V Instructions
	Lost in Translation
	RISC-V Memory Access

