1 Pre-Check

This section is designed as a conceptual check for you to determine if you conceptually understand and have any misconceptions about this topic. Please answer true/false to the following questions, and include an explanation:

1.1 Each hardware thread in the CPU uses a shared cache.

False, each thread has its own cache, which can lead to cache-incoherence.

1.2 Atomicity can only be guaranteed within a single RISC-V instruction.

False, load-reserve, store-conditional allows uninterrupted execution across multiple instructions.

1.3 The amount of speedup is directly proportional to the increase in number of threads.

False, usually there is some overhead in paralleling an operation. Amdahl’s Law shows that true speedup is affected not only by the number of threads but also by the amount of code that cannot be sped up.

1.4 Hamming codes can detect any type of data corruption.

False. They cannot detect all three bit errors.

1.5 All RAID levels improve reliability.

False. Raid 0 actually decreases reliability.

2 Coherency and Atomics

The benefits of multi-threading programming come only after you understand concurrency. Here are two of the most common concurrency issues:

1. Cache-incoherence: each hardware thread has its own cache, hence data modified in one thread may not be immediately reflected in the other. This can often be solved by bypassing the cache and writing directly to memory, i.e. using volatile keywords in many languages.

2. Read-modify-write: Read-modify-write is a very common pattern in programming. In the context of multi-threading programming, the interleaving of R, M, W stages often produces a lot of issues.
In order to solve the problems created by Read-modify-write, we have to rely on the idea of **uninterrupted execution**, also known as atomic execution.

In RISC-V, we have two categories of atomic instructions:

1. **Load-reserve, store-conditional**: allows us to have uninterrupted execution across multiple instructions

2. **Amo.swap**: allows for uninterrupted memory operations within a single instruction

Both of these can be used to achieve atomic primitives. Here are examples for each:

Test-and-set

Start:
```
addi t0 x0 1 # Locked = 1
amoswap.w.aq t1 t0 (a0)
bne t1 x0 Start
```

If the lock is not free, retry

... # Critical section
```
amoswap.w.rl x0 x0 (a0) # Release lock
```

Compare-and-swap

```
addi t0 x0 1 # Locked = 1
amoswap.w.aq t1 t0 (a0)
bne t1 x0 Start
```

a0 holds address of memory location

a1 holds expected value

a2 holds desired value

a0 holds return value, 0 if successful, !0 otherwise

```
cas:
    lr.w t0, (a0) # Load original value.
bne t0, a1, fail # Doesnt match, so fail.
    sc.w a0, a2, (a0) # Try to update.
    jr ra # Return.
```

fail:
```
li a0, 1 # Set return to failure.
jr ra # Return.
```

Instruction definitions:

1. **Load-reserve**: Loads the four bytes at M[R[rs1]], writes them to R[rd], sign-extending the result and registers a reservation on that word in memory.

2. **Store-conditional rd, rs2, (rs1)**: Stores the four bytes in register R[rs2] to M[R[rs1]], provided there exists a load reservation on that memory address. Writes 0 to R[rd] if the store succeeded, or a nonzero error code otherwise.

3. **Amoswap rd, rs2, (rs1)**: Atomically, puts the sign-extended word located at M[R[rs1]] into R[rd] and puts R[rs2] into M[R[rs1]].

Explanations for both methodologies:

1. **Test-and-set**: We have a lock stored at the address specified by a0. We utilize amoswap to put in 1 and get the old value. If the old value was a 1, we would not have changed the value of the lock and we will realize that someone currently has the lock. If the old value was a 0, we will have just "locked" the lock and can continue with the critical section. When we are done, we put a 0 back into the lock to "unlock" it.

2. **Compare-and-swap**: CAS tries to first reserve the memory and gets the value stored and compares it to the expected value. If the expected value and the value that was stored do not match, the entire process fails and we
must restart to update based on the new information. Otherwise, we register a reservation on the memory and try to store the new value. If the exit code is nonzero, something went wrong with the store and we must retry the entire LR/SC process. Otherwise with a zero exit code, we continue into the critical section, then release the lock.

2.1 Why do we need special instructions for these operations? Why can’t we use normal load and store for \(lr \) and \(sc \)? Why can’t we expand amoswap to a normal load and store?

For \(lr \) and \(sc \), after \(lr \), other threads cannot write to the location marked reserve, hence the value loaded from memory will be unchanged between \(lr \) and \(sc \). For amoswap, it does load and store in one single CPU cycle, hence the operation is atomic and uninterruptable.

2.2 Now that we have atomic operations, let’s try to experiment with them. Let us try to implement an algorithm that enforces ordered thread execution. This means that if we have four threads, thread 0 goes first, thread 1 goes next, etc. For this problem assume that \(a1 \) holds the location of a piece of memory we have access to for the entire duration of our algorithm. Also, we can assume there exists a label \(\text{get_thread_num} \) that returns the thread’s number in \(a0 \), and that we save \(ra \) to the stack before line 1 and restore \(ra \) immediately before line 21. Try to fill in the blanks below. Please use LR/SC for this problem:

1. \(\text{addi t0, x0, 0} \)
2. \(\text{...} \)
3. \(\text{# Setup for the first (0-th) thread} \)
4. \(\text{# Assume we now spawn 4 threads in this code} \)
5. \(\text{...} \)
6. \(\text{Check: jal ____________________________ # Get the current thread number} \)
7. \(\text{# Get the ID of the next thread that should operate} \)
8. \(\text{______________________________ # (make sure this can’t get interfered with)} \)
9. \(\text{Done: addi t0, t0, 1} \)
10. \(\text{# Set which thread is next to run} \)
11. \(\text{bne ____________________________} \)
12. \(\text{...} \)
13. \(\text{# Assume we now join the 4 threads in this code} \)
14. \(\text{...} \)
15. \(\text{jr ra} \)
3 Thread-Level Parallelism

As powerful as data level parallelization is, it can be quite inflexible, as not all applications have data that can be vectorized. Multithreading, or running a single piece of software on multiple hardware threads, is much more powerful and versatile.

OpenMP provides an easy interface for using multithreading within C programs. Some examples of OpenMP directives:

- The `parallel` directive indicates that each thread should run a copy of the code within the block. If a for loop is put within the block, every thread will run every iteration of the for loop.

```c
#pragma omp parallel
{  
  ...
}
```

NOTE: The opening curly brace needs to be on a newline or else there will be a compile-time error!

- The `parallel for` directive will split up iterations of a for loop over various threads. Every thread will run different iterations of the for loop. The following two code snippets are equivalent.

```c
#pragma omp parallel for
for (int i = 0; i < n; i++) {
  ...
}
```

```c
#pragma omp parallel
{  
  #pragma omp for
  for (int i = 0; i < n; i++) {  
    ...
  }
}
```

There are two functions you can call that may be useful to you:
• **int omp_get_thread_num()** will return the number of the thread executing the code

• **int omp_get_num_threads()** will return the number of total hardware threads executing the code

3.1 For each question below, state and justify whether the program is sometimes incorrect, always incorrect, slower than serial, faster than serial, or none of the above. Assume the default number of threads is greater than 1. Assume no thread will complete before another thread starts executing. Assume **arr** is an int[] of length **n**.

(a)

```c
// Set element i of arr to i
#pragma omp parallel
{
    for (int i = 0; i < n; i++)
        arr[i] = i;
}
```

Slower than serial: There is no **for** directive, so every thread executes this loop in its entirety. **n** threads running **n** loops at the same time will actually execute in the same time as 1 thread running 1 loop. Despite the possibility of false sharing, the values should all be correct at the end of the loop. Furthermore, the existence of parallel overhead due to the extra number of threads could slow down the execution time.

(b)

```c
// Set arr to be an array of Fibonacci numbers.
arr[0] = 0;
arr[1] = 1;
#pragma omp parallel for
for (int i = 2; i < n; i++)
    arr[i] = arr[i-1] + arr[i - 2];
```

Always incorrect (when **n** > 4): Loop has data dependencies, so the calculation of all threads but the first one will depend on data from the previous thread. Because we said “assume no thread will complete before another thread starts executing,” this code will always read incorrect values.

(c)

```c
// Set all elements in arr to 0;
int i;
#pragma omp parallel for
for (i = 0; i < n; i++)
    arr[i] = 0;
```

Faster than serial: The **for** directive actually automatically makes loop variables (such as the index) private, so this will work properly. The **for** directive splits

```c

```
up the iterations of the loop into continuous chunks for each thread, so there will be no data dependencies or false sharing.

3.2 What potential issue can arise from this code?

```c
// Decrements element i of arr. n is a multiple of omp_get_num_threads()
#pragma omp parallel
{
    int threadCount = omp_get_num_threads();
    int myThread = omp_get_thread_num();
    for (int i = 0; i < n; i++) {
        if (i % threadCount == myThread) arr[i] -= 1;
    }
}
```

False sharing arises because different threads can modify elements located in the same memory block simultaneously. This is a problem because some threads may have incorrect values in their cache block when they modify the value `arr[i]`, invalidating the cache block.

3.3

```c
// Assume n holds the length of arr
double fast_product(double *arr, int n) {
    double product = 1;
    #pragma omp parallel for
    for (int i = 0; i < n; i++) {
        product *= arr[i];
    }
    return product;
}
```

(a) What is wrong with this code?

The code has the shared variable `product`.

(b) Fix the code using `#pragma omp critical`

```c
double fast_product(double *arr, int n) {
    double product = 1;
    #pragma omp parallel for
    for (int i = 0; i < n; i++) {
        #pragma omp critical
        product *= arr[i];
    }
    return product;
}
```

(c) Fix the code using `#pragma omp reduction(operation: var)`.
4.1 Amdahl’s Law

In the programs we write, there are sections of code that are naturally able to be sped up. However, there are likely sections that just can’t be optimized any further to maintain correctness. In the end, the overall program speedup is the number that matters, and we can determine this using Amdahl’s Law:

\[
\text{True Speedup} = \frac{1}{S + \frac{1-S}{P}}
\]

where \(S\) is the non-sped-up part and \(P\) is the speedup factor (determined by the number of cores, threads, etc.).

4.1 You are going to run a convolutional network to classify a set of 100,000 images using a computer with 32 threads. You notice that 99% of the execution of your project code can be parallelized on these threads. What is the speedup?

\[
\frac{1}{(0.01 + 0.99/32)} \approx 1/0.04 = 25
\]

4.2 You run a profiling program on a different program to find out what percent of this program each function takes. You get the following results:

<table>
<thead>
<tr>
<th>Function</th>
<th>% Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>30%</td>
</tr>
<tr>
<td>g</td>
<td>10%</td>
</tr>
<tr>
<td>h</td>
<td>60%</td>
</tr>
</tbody>
</table>

(a) We don’t know if these functions can actually be parallelized. However, assuming all of them can be, which one would benefit the most from parallelism?

h

(b) Let’s assume that we verified that your chosen function can actually be parallelized. What speedup would you get if you parallelized just this function with 8 threads?

\[
\frac{1}{(0.4 + 0.6/8)} \approx 2.1
\]

5 Hamming ECC

Recall the basic structure of a Hamming code. We start out with some bitstring, and then add parity bits at the indices that are powers of two (1, 2, 8, etc.). We don’t assign values to these parity bits yet. Note that the indexing convention
used for Hamming ECC is different from what you are familiar with. In particular, the 1 index represents the MSB, and we index from left-to-right. The \(i \)th parity bit \(P\{i\} \) covers the bits in the new bitstring where the index of the bit under the aforementioned convention, \(j \), has a 1 at the same position as \(i \) when represented as binary. For instance, 4 is 0b100 in binary. The integers \(j \) that have a 1 in the same position when represented in binary are 4, 5, 6, 7, 12, 13, etc. Therefore, \(P4 \) covers the bits at indices 4, 5, 6, 7, 12, 13, etc. A visual representation of this is:

![Hamming ECC Table](https://en.wikipedia.org/wiki/hamming_code)

Source: https://en.wikipedia.org/wiki/hamming_code

5.1 How many bits do we need to add to 0011\(_2\) to allow single error correction?

\(m \) parity bits can cover bits 1 through \(2^m - 1 \), of which \(2^m - m - 1 \) are data bits. Thus, to cover 4 data bits, we need 3 parity bits.

5.2 Which locations in 0011\(_2\) would parity bits be included?

Using \(P \) to represent parity bits: PP0P011\(_2\)

5.3 Which bits does each parity bit cover in 0011\(_2\)?

- Parity bit 1: 1, 3, 5, 7
- Parity bit 2: 2, 3, 6, 7
- Parity bit 3: 4, 5, 6, 7

5.4 Write the completed coded representation for 0011\(_2\) to enable single error correction. Assume that we set the parity bits so that the bits they cover have even parity.

1000011\(_2\)

5.5 How can we enable an additional double error detection on top of this?

Add an additional parity bit over the entire sequence.

5.6 Find the original bits given the following SEC Hamming Code: 0110111\(_2\). Again, assume that the parity bits are set so that the bits they cover have even parity.

Parity group 1: error
Parity group 2: okay
Parity group 4: error

To find the incorrect bit’s index, we simply sum up the indices of all the erroneous bits.

Incorrect bit: \(1 + 4 = 5 \), change bit 5 from 1 to 0: 0110011\(_2\)

0110011\(_2\) → 1011\(_2\)
Find the original bits given the following SEC Hamming Code: 1001000₂

Parity group 1: error
Parity group 2: okay
Parity group 4: error
Incorrect bit: 1 + 4 = 5, change bit 5 from 1 to 0: 1001100₂
1001100₂ → 0100₂

6 RAID

Fill out the following table:

<table>
<thead>
<tr>
<th>RAID</th>
<th>Configuration</th>
<th>Pro/Good for</th>
<th>Con/Bad for</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID 0</td>
<td>Split data across multiple disks</td>
<td>No overhead, fast read / write</td>
<td>Reliability</td>
</tr>
<tr>
<td>RAID 1</td>
<td>Mirrored Disks: Extra copy of data</td>
<td>Fast read / write, Fast recovery</td>
<td>High overhead → expensive</td>
</tr>
<tr>
<td>RAID 2</td>
<td>Hamming ECC: Bit-level striping, one disk per parity group</td>
<td>Smaller overhead</td>
<td>Redundant check disks</td>
</tr>
<tr>
<td>RAID 3</td>
<td>Byte-level striping with single parity disk.</td>
<td>Smallest overhead to check parity</td>
<td>Need to read all disks, even for small reads, to detect errors</td>
</tr>
<tr>
<td>RAID 4</td>
<td>Block-level striping with single parity disk.</td>
<td>Higher throughput for small reads</td>
<td>Still slow small writes (A single check disk is a bottleneck)</td>
</tr>
<tr>
<td>RAID 5</td>
<td>Block-level striping, parity distributed across disks.</td>
<td>Higher throughput of small writes</td>
<td>The time to repair a disk is so long that another disk might fail in the meantime.</td>
</tr>
</tbody>
</table>