
CS 61C OS & Parallelism
Summer 2022 Discussion 9

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 Responsibilities of the OS include loading programs, handling services, multiplexing

resources, and combining programs together for efficiency.

1.2 The purpose of supervisor mode is to isolate certain instructions and routines from

user programs.

1.3 User programs call into OS routines using system calls.

1.4 A thread is another name for a process.

1.5 SIMD is a form of instruction-level parallelism.

1.6 SIMD is ideal for flow-control heavy tasks (i.e. tasks with many branches/if state-

ments).

1.7 Intel’s SIMD intrinsic instructions invoke large registers available on the architecture

in order to perform one operation on multiple values at once.

2 OS & Parallelism

2 Forking
2.1 One of the many responsibilities of the OS is to load new programs, and in order

to do this it creates a new process and loads in the program to execute. In Linux,

the system call to create a new process is fork(). fork() creates a new process by

duplicating the calling process. The new process is referred to as the child process.

The calling process is referred to as the parent process. In the parent process, fork()

returns the process ID of the child or -1 if the fork has failed. In the child process,

it returns 0.

Use this information to complete the code block below, which creates a child process

to change the value of y while the parent process changes the value of x. Assume

any call to fork() is successful.

int x = 10;

int y = 0;

int pid = __________;

if(___________){

y++

}

else{

x--;

}

2.2 After the code segment completes, what will be the values of x and y for the parent?

2.3 After the code segment completes, what will be the values of x and y for the child?

OS & Parallelism 3

3 Data-Level Parallelism
The idea central to data level parallelism is vectorized calculation: applying opera-

tions to multiple items (which are part of a single vector) at the same time.

Some machines with x86 architectures have special, wider registers, that can hold

128, 256, or even 512 bits. Intel intrinsics (Intel proprietary technology) allow us to

use these wider registers to harness the power of DLP in C code.

Below is a small selection of the available Intel intrinsic instructions. All of them

perform operations using 128-bit registers. The type m128i is used when these

registers hold 4 ints, 8 shorts or 16 chars; m128d is used for 2 double precision

floats, and m128 is used for 4 single precision floats. Where you see “epiXX”, epi

stands for extended packed integer, and XX is the number of bits in the integer.

“epi32” for example indicates that we are treating the 128-bit register as a pack of 4

32-bit integers.

• __m128i _mm_set1_epi32(int i):

Set the four signed 32-bit integers within the vector to i.

• __m128i _mm_loadu_si128(__m128i *p):

Load the 4 successive ints pointed to by p into a 128-bit vector.

• __m128i _mm_mullo_epi32(__m128i a, __m128i b):

Return vector (a0 · b0, a1 · b1, a2 · b2, a3 · b3).
• __m128i _mm_add_epi32(__m128i a, __m128i b):

Return vector (a0 + b0, a1 + b1, a2 + b2, a3 + b3)

• void _mm_storeu_si128(__m128i *p, __m128i a):

Store 128-bit vector a at pointer p.

• __m128i _mm_and_si128(__m128i a, __m128i b):

Perform a bitwise AND of 128 bits in a and b, and return the result.

• __m128i _mm_cmpeq_epi32(__m128i a, __m128i b):

The ith element of the return vector will be set to 0xFFFFFFFF if the ith

elements of a and b are equal, otherwise it’ll be set to 0.

Notice: On this worksheet, we are using the unaligned versions of the commands

that interface with memory (i.e. storeu/loadu vs. store/load). This is because

the store/load commands require that the address we are loading at is aligned at

some byte boundary (and not necessarily just word-aligned), whereas the unaligned

versions have no such requirements. For instance, _mm_store_si128 needs the address

to be aligned on a 16-byte boundary (i.e. is a multiple of 16). There is extra work

that needs to be done to achieve these alignment requirements, so for this class, we

just use the unaligned variants.

4 OS & Parallelism

3.1 You have an array of 32-bit integers and a 128-bit vector as follows:

1 int arr[8] = {1, 2, 3, 4, 5, 6, 7, 8};

2 __m128i vector = _mm_loadu_si128((__m128i *) arr);

For each of the following tasks, fill in the correct arguments for each SIMD instruction,

and where necessary, fill in the appropriate SIMD function. Assume they happen

independently, i.e. the results of Part (a) do not at all affect Part (b).

(a) Multiply vector by itself, and set vector to the result.

1 vector = ____________________(____________________, ____________________);

(b) Add 1 to each of the first 4 elements of the arr, resulting in arr = {2, 3, 4,

5, 5, 6, 7, 8}

1 __m128i vector_ones = _mm_set1_epi32(____________________);

2 __m128i result = _mm_add_epi32(____________________, ____________________);

3 _mm_storeu_si128(____________________, ____________________);

(c) Add the second half of the array to the first half of the array, resulting

in arr = {1 + 5, 2 + 6, 3 + 7, 4 + 8, 5, 6, 7, 8} = {6, 8, 10, 12, 5,

6, 7, 8}

1 __m128i result = _mm_add_epi32(_mm_loadu_si128(____________________), ____________________);

2 _mm_storeu_si128(____________________, ____________________);

(d) Set every element of the array that is not equal to 5 to 0, resulting in arr

= {0, 0, 0, 0, 5, 0, 0, 0}. Remember that the first half of the array has

already been loaded into vector.

1 __m128i fives = ____________________(____________________);

2 __m128i mask = ____________________(____________________, ____________________);

3 __m128i result = ____________________(____________________, ____________________);

4 _mm_storeu_si128(____________________, ____________________);

5 vector = _mm_loadu_si128(____________________);

6 mask = ____________________(____________________, ____________________);

7 result = ____________________(____________________, ____________________);

8 _mm_storeu_si128(____________________, ____________________);

3.2 SIMD-ize the following function, which returns the product of all of the elements

in an array. Things to think about: When iterating through a loop and grabbing

elements 4 at a time, how should we update our index for the next iteration? What

if our array has a length that isn’t a multiple of 4? Can we always SIMD-ize an

entire array? What can we do to handle this tail case?

static int product_naive(int n, int *a) {

int product = 1;

for (int i = 0; i < n; i++) {

product *= a[i];

}

return product;

}

OS & Parallelism 5

static int product_vectorized(int n, int *a) {

int result[4];

__m128i prod_v = __;

for (int i = 0; i < _____; i += ___) { // Vectorized loop

prod_v = __;

}

__mm_storeu_si128(__________________________, __________________________);

for (int i = ______________; i < ____________; i++) { // Handle tail case

result[0] *= ________________________;

}

return ___;

}

6 OS & Parallelism

4 Thread-Level Parallelism
As powerful as data level parallelization is, it can be quite inflexible, as not all

applications have data that can be vectorized. Multithreading, or running a single

piece of software on multiple hardware threads, is much more powerful and versatile.

OpenMP provides an easy interface for using multithreading within C programs.

Some examples of OpenMP directives:

• The parallel directive indicates that each thread should run a copy of the

code within the block. If a for loop is put within the block, every thread will

run every iteration of the for loop.

#pragma omp parallel

{

...

}

NOTE: The opening curly brace needs to be on a newline or else there

will be a compile-time error!

• The parallel for directive will split up iterations of a for loop over various

threads. Every thread will run different iterations of the for loop. The

following two code snippets are equivalent.

#pragma omp parallel for

for (int i = 0; i < n; i++) {

...

}

#pragma omp parallel

{

#pragma omp for

for (int i =0; i < n; i++) { ... }

}

There are two functions you can call that may be useful to you:

• int omp_get_thread_num() will return the number of the thread executing

the code

• int omp_get_num_threads() will return the number of total hardware threads

executing the code

OS & Parallelism 7

4.1 For each question below, state and justify whether the program is sometimes

incorrect, always incorrect, slower than serial, faster than serial, or none

of the above. Assume the default number of threads is greater than 1. Assume

no thread will complete before another thread starts executing. Assume arr is an

int[] of length n.

(a) // Set element i of arr to i

#pragma omp parallel

{

for (int i = 0; i < n; i++)

arr[i] = i;

}

(b) // Set arr to be an array of Fibonacci numbers.

arr[0] = 0;

arr[1] = 1;

#pragma omp parallel for

for (int i = 2; i < n; i++)

arr[i] = arr[i-1] + arr[i - 2];

(c) // Set all elements in arr to 0;

int i;

#pragma omp parallel for

for (i = 0; i < n; i++)

arr[i] = 0;

(d) // Set element i of arr to i;

int i;

#pragma omp parallel for

for (i = 0; i < n; i++)

*arr = i;

arr++;

4.2 What potential issue can arise from this code?

1 // Decrements element i of arr. n is a multiple of omp_get_num_threads()

2 #pragma omp parallel

3 {

4 int threadCount = omp_get_num_threads();

5 int myThread = omp_get_thread_num();

6 for (int i = 0; i < n; i++) {

7 if (i % threadCount == myThread) arr[i] -= 1;

8 }

9 }

8 OS & Parallelism

	Pre-Check
	Forking
	Data-Level Parallelism
	Thread-Level Parallelism

