1 Precheck

1.1 The idea of floating point is to use the ability to move the radix (decimal) point wherever to represent a large range of real numbers as exact as possible.

1.2 Floating Point and Two’s Complement can represent the same total amount of numbers (any reals, integer, etc.) given the same number of bits.

1.3 The distance between floating point numbers increases as the absolute value of the numbers increase.

1.4 Floating Point addition is associative.

2 C Memory

2.1 For each part, choose one or more of the following memory segments where the data could be located: code, static, heap, stack.

(a) Static variables
(b) Local variables
(c) Global variables
(d) Constants (constant variables or values)
(e) Functions (i.e. Machine Instructions)
(f) Result of Dynamic Memory Allocation (malloc or calloc)
(g) String Literals

Compare these different ways of storing 'DEADBEEF'. Assume that each program is run on the same machine and architecture.

1 char[] arr = 'DEADBEEF'
Do these two C programs store 'DEADBEEF' in memory the same way?

You take a look at the ASCII table and translate the string 'DEADBEEF' into bytes.

Does this C program store 'DEADBEEF' in memory the same way as storing it as a string?

C does not automatically handle memory for you. In each program, an address space is set aside, separated in 2 dynamically changing regions and 2 'static' regions.

- The Stack: local variables inside of functions, where data is garbage immediately after the function in which it was defined returns. Each function call creates a stack frame with its own arguments and local variables. The stack dynamically changes, growing downwards as multiple functions are called within each other (LIFO structure), and collapsing upwards as functions finish execution and return.

- The Heap: memory manually allocated by the programmer with malloc, calloc, or realloc. Used for data we want to persist beyond function calls, growing upwards to 'meet' the stack. Careful heap management is necessary to avoid Heisenbugs! Memory is freed only when the programmer explicitly frees it!

- Static data: global variables declared outside of functions, does not grow or shrink through function execution.

- Code (or Text): loaded at the start of the program and does not change after, contains executable instructions and any pre-processor macros.

There are a number of functions in C that can be used to dynamically allocate memory on the heap. The following are the ones we use in this class:

- malloc(size_t size) allocates a block of size bytes and returns the start of the block. The time it takes to search for a block is generally not dependent on size.
• `calloc(size_t count, size_t size)` allocates a block of `count * size` bytes, sets every value in the block to zero, then returns the start of the block.

• `realloc(void *ptr, size_t size)` "resizes" a previously-allocated block of memory to `size` bytes, returning the start of the resized block.

• `free(void *ptr)` deallocates a block of memory which starts at `ptr` that was previously allocated by the three previous functions.

Write the code necessary to allocate memory on the heap in the following scenarios

(a) An array `arr` of `k` integers

(b) A string `str` containing `p` characters

(c) An `n × m` matrix `mat` of integers initialized to zero.

(d) Unallocating all but the first 5 values in an integer array `arr`. (Assume `arr` has more than 5 values)

Compare the following two implementations of a function which duplicates a string. Is either one correct? Which one runs faster?

```c
char* strdup1(char* s) {
    int n = strlen(s);
    char* new_str = malloc((n + 1) * sizeof(char));
    for (int i = 0; i < n; i++) new_str[i] = s[i];
    return new_str;
}

char* strdup2(char* s) {
    int n = strlen(s);
    char* new_str = calloc(n + 1, sizeof(char));
    for (int i = 0; i < n; i++) new_str[i] = s[i];
    return new_str;
}
```

3 Floating Point

The IEEE 754 standard defines a binary representation for floating point values using three fields.

• The `sign` determines the sign of the number (0 for positive, 1 for negative).
• The exponent is in biased notation. For instance, the bias is -127 which comes from \((2^{8-1} - 1)\) for single-precision floating point numbers.
• The significand or mantissa is akin to unsigned integers, but used to store a fraction instead of an integer.

The below table shows the bit breakdown for the single precision (32-bit) representation. The leftmost bit is the MSB and the rightmost bit is the LSB.

<table>
<thead>
<tr>
<th>1</th>
<th>8</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sign</td>
<td>Exponent</td>
<td>Mantissa/Significand/Fraction</td>
</tr>
</tbody>
</table>

For normalized floats:
\[
\text{Value} = (-1)^{\text{Sign}} \times 2^{\text{Exp} + \text{Bias}} \times \text{significand}_2
\]

For denormalized floats:
\[
\text{Value} = (-1)^{\text{Sign}} \times 2^{\text{Exp} + \text{Bias} + 1} \times 0.\text{significand}_2
\]

<table>
<thead>
<tr>
<th>Exponent</th>
<th>Significand</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Anything</td>
<td>Denorm</td>
</tr>
<tr>
<td>1-254</td>
<td>Anything</td>
<td>Normal</td>
</tr>
<tr>
<td>255</td>
<td>0</td>
<td>Infinity</td>
</tr>
<tr>
<td>255</td>
<td>Nonzero</td>
<td>NaN</td>
</tr>
</tbody>
</table>

Note that in the above table, our exponent has values from 0 to 255. When translating between binary and decimal floating point values, we must remember that there is a bias for the exponent.

3.1 Convert the following single-precision floating point numbers from hexadecimal to decimal or from decimal to hexadecimal. You may leave your answer as an expression.

• 0x00000000
• 8.25
• 0x00000F00
• 39.5625
• 0xFFF94BEEF
• 1/3
• -∞

As we saw above, not every number can be represented perfectly using floating point. For this question, we will only look at positive numbers.

3.2 What is the next smallest number larger than 2 that can be represented completely?
3.3 What is the next smallest number larger than 4 that can be represented completely?

3.4 What is the largest odd number that we can represent? Hint: At what power can we only represent even numbers?