
CS61C C Memory Management
Summer 2025 Discussion 2

1 Memory Management
1.1 For each part, choose one or more of the following memory segments where the data could be

located: code, static, heap, stack

a) Local variables

Stack
b) Global variables

Static
c) Constants (constant variables or values)

Code, static, or stack

Constants can be compiled directly into the code. x = x + 1 can compile with the number 1
stored directly in the machine instruction in the code. That instruction will always increment
the value of the variable x by 1, so it can be stored directly in the machine instruction
without reference to other memory. This can also occur with pre-processor macros:

#define y 5

int plus_y(int x) {
 x = x + y;
 return x;
}

Constants can also be found in the stack or static storage depending on if it’s declared in a
function or not.

int x = 1;

int sum(int* arr) {
 int total = 0;
 ...
}

In this example, x is a variable whose value will be stored in the static storage, while total
is a local variable whose value will be stored on the stack. Variables declared const are not
allowed to change, but the usage of const can get more tricky when combined with pointers.

d) Functions (i.e. Machine Instructions)

Code

1

2 C Memory Management

e) Results of Dynamic Memory Allocation (malloc or calloc)

Heap
f) String Literals

Static

When declared in a function, string literals can only be stored in static memory. String literals
are declared when a character pointer is assigned to a string declared within quotation marks,
i.e. char* s = "string". You’ll often see a near identical alternative to declaring a string:
char s[7] = "string". This string array will be stored in the stack (when declared inside
a function) and is mutable, though they cannot change in size. Note that the compiler will
arrange for the char array to be initialized from the literal and be mutable.

1.2 Write the code necessary to allocate memory on the heap in the following scenarios:

(a) An array of arr of k integers

int *arr = malloc(sizeof(int) * k);
(b) A string str of length p. Note that a string’s length is defined by strlen

char *str = malloc(sizeof(char) * (p + 1));

A string’s length is defined by strlen, and all strings must contain a null terminator. We
must allocate space for p characters plus one null terminator.

(c) An n × m matrix mat of integers initialized to zero.

int *mat = calloc(n * m, sizeof(int));

Alternative solution. This might be needed if you wanted to efficiently permute the rows of
the matrix.

int **mat = calloc(n, sizeof(int *));
for (int i = 0; i < n; i++) {
 mat[i] = calloc(m, sizeof(int));
}

(d) Deallocate all but the first 5 values in an integer array arr. (Assume arr has more than 5
values).

int *arr = ... ;

arr = realloc(arr, 5 * sizeof(int));

This will resize arr by deallocating the memory segments containing the remainder of the
array.

1.3 Compare the following two implementations of a function which duplicates a string. Is either
implementation correct?

2

C Memory Management 3

char* strdup1(char* s) {
 int n = strlen(s);
 char* new_str = malloc((n + 1) * sizeof(char));
 for (int i = 0; i < n; i++) new_str[i] = s[i];
 return new_str;
}

char* strdup2(char* s) {
 int n = strlen(s);
 char* new_str = calloc(n + 1, sizeof(char));
 for (int i = 0; i < n; i++) new_str[i] = s[i];
 return new_str;
}

The first implementation is incorrect because malloc doesn’t initialize the allocated memory
to any given value, so the new string may not be null-terminated. This is easily fixed, however,
just by setting the last character in new_str to the null terminator. The second implementation
is correct since calloc will set each character to zero, so the string is always null-terminated.

2 Pass-by-Who?
2.1 The following functions may contain logic or syntax errors. Find and correct them.

(a) Returns the sum of all the elements in summands.

It is necessary to pass a size alongside the pointer.

int sum(int* summands, size_t n) {
 int sum = 0;
 for (int i = 0; i < n; i++)
 sum += *(summands + i);
 return sum;
}

(b) Increments all of the letters in the string where string points to the beginning of an array
of arbitrary byte length n. Does not modify any other parts of the array’s memory. Hint: n
is not necessarily equivalent to strlen(string).

3

4 C Memory Management

The ends of strings are denoted by the null terminator rather than 𝑛. Simply having space
for 𝑛 characters in the array does not mean the string stored inside is also of length 𝑛.

void increment(char* string) {
 for (i = 0; string[i] != 0; i++)
 string[i]++; // or (*(string + i))++;
}

Additionally, the operator precedence is incorrect for the expression *(string + i)+
+. The ++ increment will occur before the dereference operator occurs. Thus, we need to
wrap in parentheses with (*(string + i))++ or use array subscripting–which has equal
precedence as dereferencing–like string[i]++.

Another common bug to watch out for is the corner case that occurs when incrementing
the character with the value 0xFF. Adding 1 to 0xFF will overflow back to 0, producing a
null terminator and unintentionally shortening the string.

(c) Overwrites an input string src with “61C is awesome!” if there’s room. Does nothing if there
is not. Assume that length correctly represents the length of src.

char *srcptr, replaceptr initializes a char pointer, and a char—not two char
pointers.

The correct initialization should be, char *srcptr, *replaceptr.

2.2 Implement the following functions so that they work as described.

(a) Swap the value of two ints. Remain swapped after returning from this function. Hint: Our
answer is around three lines long.

void swap(int *x, int *y) {
 int temp = *x;
 *x = *y;
 *y = temp;
}

(b) Return the number of bytes in a string. Do not use strlen. Hint: Our answer is around 5
lines long.

int mystrlen(char* str) {
 int count = 0;
 while (*str != 0) {
 str++;
 count++;
 }
 return count;
}

4

C Memory Management 5

3 Endianness
3.1 Suppose we run the following code on a 32b architecture:

uint32_t nums[2] = {10, 20};
uint32_t *q = (uint32_t *) nums;
uint32_t **p = &q;

Find the values located in memory at the byte cells for both a Big Endian and a Little Endian
system given that:
• the array nums starts at address 0x36432100
• p’s address is 0x10000000

Little Endian Big Endian

0xFFFFFFFF ...
0x36432107 0x00

0x00
0x00
0x14
0x00
0x00
0x00

0x36432100 0x0A
...

0x20000003 0x36
0x43
0x21

0x20000000 0x00
...

0x10000003 0x20
0x00
0x00

0x10000000 0x00
...

0xFFFFFFFF ...
0x36432107 0x14

0x00
0x00
0x00
0x0A
0x00
0x00

0x36432100 0x00
...

0x20000003 0x00
0x21
0x43

0x20000000 0x36
...

0x10000003 0x00
0x00
0x00

0x10000000 0x20
...

• A 32b architecture has 32-bit memory addresses from 0x00000000 - 0xFFFFFFFF

• Big endian: the most significant byte of the value of a variable is stored in memory at the
lowest address of the chunk of byte cells allocated for that variable.

• Little endian: the least significant byte of the value of a variable is stored in memory at the
lowest address of the chunk of byte cells allocated for that variable.

5

6 C Memory Management

3.2 Suppose we add an an additional instruction (line #4) to the end of the previous code block:

uint32_t nums[2] = {10, 20};
uint32_t *q = (uint32_t *) nums;
uint32_t **p = &q;
uint64_t *y = (uint64_t *) nums;

Provide answers for the following questions for both a Big Endian system and Little Endian
system:

1) What does *y evaluate to?

Because y is a pointer to a uint64_t* variable, dereferencing results in evaluating 8
contiguous bytes starting from the value of y (an address in memory = 0x36432100) in big
endian or little endian.

Little-endian: 0x00000014_0000000A

Big-endian: 0x0000000A_00000014

2) What does &q evaluate to?

&q evaluates to 0x20000000 in both big endian and little endian. This is the value of variable
p (p is located at 0x10000000).

3) What does &nums evaluate to?

&nums evaluates to 0x36432100 in both big endian and little endian.

Both q and nums act as pointers to the first element of the nums array. However, nums is
different than a normal variable. The values of nums and &nums are equal, while the address
of variable q is not equal to the address of the data it is pointing to.

4) What does *(q + 1) evaluate to?

 *(q+1) = nums[1] = *(nums+1) = 20 (decimal). q and nums have the same value. q is a
pointer to a 32b integer. (q+1) is equivalent to the address = q + 1 * sizeof(uint32_t)
= 0x36432100 + 0x4 = 0x36432104. Dereferencing this address gives us the value of
0x14 = 20 (decimal). This is the same in a big endian or little endian system.

6

C Memory Management 7

4 C Generics
4.1 True or False: In C, it is possible to directly dereference a void * pointer, e.g.

... = *ptr;

False. To dereference a pointer, we must know the number of bytes to access from memory at
compile time. A void * pointer contains the address for an arbitrary region of memory without
a known size, so they cannot be dereferenced – they must be typecast beforehand (e.g. ... =
*((int *) ptr))

4.2 Generic functions (i.e., generics) in C use void * pointers to operate on memory without the
restriction of types. Generic pointers do not support dereferencing, as the number of bytes to
access from memory is not known at compile-time. They instead use byte handling functions
such as memcpy and memmove.

Implement rotate, which will prompt the following program to generate the provided output.

int main(int argc, char *argv[]) {
 int array[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
 print_int_array(array, 10);
 rotate(array, array + 5, array + 10);
 print_int_array(array, 10);
 rotate(array, array + 1, array + 10);
 print_int_array(array, 10);
 rotate(array + 4, array + 5, array + 6);
 print_int_array(array, 10);
 return 0;
}

Output:

$./rotate
Array: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
Array: [6, 7, 8, 9, 10, 1, 2, 3, 4, 5]
Array: [7, 8, 9, 10, 1, 2, 3, 4, 5, 6]
Array: [7, 8, 9, 10, 2, 1, 3, 4, 5, 6]

void rotate(void *front, void *separator, void *end) {
 size_t width = (char *) end - (char *) front;
 size_t prefix_width = (char *) separator - (char *) front;
 size_t suffix_width = width - prefix_width;
 char temp[prefix_width];
 memcpy(temp, front, prefix_width);
 memmove(front, separator, suffix_width);
 memcpy((char *) end - prefix_width, temp, prefix_width);
}

See slides provided under “Discussion Resources” for a visual walkthrough of the solution.

7

	Memory Management
	Pass-by-Who?
	Endianness
	C Generics

