
CS61C Floating Point, RISC-V
Summer 2025 Discussion 3

1 Floating Point
1.1 Convert the following single-precision floating point numbers from hexadecimal to decimal or

from decimal to hexadecimal using the IEEE 754 Floating Point Standard. You may leave your
answer as an expression.

a) 8.25

Answer: 0x41040000

First, we write 8.25 into binary. Splitting 8.25 into its integer and decimal portions, we can
determine that 8 will be encoded in binary as 1000 and 0.25 will be .01 (the 1 corresponds
to the 2−2 place). So, 8.25 = 1000.01. In normalized form, we get 1.000012 × 23.

Our floating point representation has three parts: the sign, exponent and significand. Our
number is positive, so our sign bit −1𝑆 will be 0. Solving for the significand, we know that
our number will have a non-zero exponent. This is a normalized number, so we will have a
leading 1 for our mantissa. Thus, our significand will be the digits after the decimal point,
00001000. Finally, we can solve for the exponent. The power in the normalized form is 3,
and we must use the bias in reverse to find what exponent we encode in binary. 3 subtracted
by a bias of -127 results in 130, so our exponent is 0b10000010. Our final binary number
concatenated is 0 100 0001 0 000 0100 0000 0000 0000 0000, or 0x41040000.

b) 39.5625

Answer: 0x421E4000

Writing 39.5625 in binary results in the bits 100111.1001. In normalized form, we
get 1.001111001 × 25. We can find our floating point exponent with 25 = 2exp + bias =
2exp −127 ⇒ exp = 132 = 0b10000100. From the normalized form, our significand is
0b00111100100 and our sign bit is zero. Our final binary number is 0b0 100 0010 0001
1110 0100 0000 0000 0000 which is 0x421E4000.

c) 0x00000F00

1

2 Floating Point, RISC-V

Answer: (2−12 + 2−13 + 2−14 + 2−15) ∗ 2−126

For 0x00000F00, splitting up the hexadecimal gives us a sign bit and exponent bit of 0, and
a significand of 0b 000 0000 0000 1111 0000 0000. Since the exponents bits are 0, we
know that this is a denormalized positive number. We can find out the true power by adding
the bias + 1 to get a power of -126.

Then, we can evaluate the mantissa by inspecting the bits that are 1 to the right of the decimal
point, and finding the corresponding negative power of two. This results in the mantissa
evaluated as 2−12 + 2−13 + 2−14 + 2−15. Combining these get the extremely small number
(−1)0 ∗ 2−126 ∗ (2−12 + 2−13 + 2−14 + 2−15)

d) 0

Answer: 0x00000000

To represent zero in floating point, the significand will be zero but we need to set the correct
exponent. Recall that any non-zero exponent will indicate a normalized float which means
the significand has a leading 1. Zero’s binary representation does not have a leading 1, so
we need an exponent of zero to indicate a denormalized float which implies a leading zero in
front of the significand. Fortunately, this nicely works out to represent zero as 0x00000000.

e) 0xFF94BEEF

Answer: NaN

Certain exponent fields are reserved for representing special values. Floating point repre-
sentations with exponents of 255 and a zero significand are reserved for ± ∞, and exponents
of 255 with a nonzero significand are reserved for representations of NaN. Deconstructing
the fields of this number gives an exponent of 0b11111111 = 255 and a nonzero signif-
icand which indicates that this represents NaN. Note that there are many possible ways to
represent NaN.

f) ∞

2

Floating Point, RISC-V 3

Answer: 0x7F800000

Certain exponent fields are reserved for representing special values. Floating point repre-
sentations with exponents of 255 and a zero significand are reserved for ± ∞, and exponents
of 255 with a nonzero significand are reserved for represntations of NaN. Because we need
to represent positive infinity, we use a 0 for the sign bit, 255 for the exponent field, and a zero
significand giving 0b01111111100000000000000000000000 or 0x7F800000 for positive
∞. Note that -∞ would be 0xFF800000.

g) 1/3

Answer: N/A - impossible to represent in single-precision floating point, we can only
approximate it

2 More Floating Point
As we saw above, not every number can be represented perfectly using floating point. For this
question, we will only look at positive numbers.

2.1 What is the next smallest number larger than 2 that can be represented completely?

Answer: 2 + 2−22

First,we start at the number 2 and write it in the normalized form. Then we increment the
number by the smallest amount possible, which is the same as incrementing the significand by
1 at the rightmost location, which adds 2−22.

Normalized: 2 = 10.000… = 1.000…00 × 21

Increment: 2 = (1.000…00 + 2−23) × 21 = (1 + 2−23) × 2 = 2 + 2−22

2.2 What is the next smallest number larger than 4 that can be represented completely?

Answer: 4 + 2−21

Similarly, we write 4 in its normalized form, and increment it by the smallest amount possible.
This is the same as incrementing the significand by 1 at the rightmost location.

Normalized: 4 = 100.000… = 1.000…00 × 22

Increment: (1.000…00 + 2−23) × 22 = (1 + 2−23) × 4 = 4 + 2−21

2.3 What is the largest odd number that we can represent? Hint: at what power can we only represent
even numbers?

3

4 Floating Point, RISC-V

Answer: 224 − 1

To find the largest odd number we can represent, we want to find when odd numbers will stop
appearing. Because we are always multiplying the significand by a power of 2𝑥, we will only
be able to represent even numbers when the exponent grows large enough. In particular, odd
numbers will stop appearing when the significand’s LSB has a step size (distance between each
successive number) of 2, so the largest odd number will be the first number with a step size of
2, subtracted by 1. After this number, only even numbers can be represented in floating point.

We can think of each binary digit in the significant as corresponding to a different power of 2
to get to a final sum. For example, 0b1011 can be evaluated as 23 + 21 + 20, where the MSB is
the 3rd bit and corresponds to 23 and the LSB is the 0th bit at 20.

We want our LSB to correspond to 21, so by counting the number of mantissa bits (23) and
including the implicit 1, we get a total exponent of 24. The smallest number with this power
would have a mantissa of 00..00, so after taking account of the implicit 1 and subtracting, this
gives 224 − 1

3 RISC-V Instructions
3.1 Assume we have an array in memory that contains int *arr = {1,2,3,4,5,6,0}. Let register

s0 hold the address of the element at index 0 in arr. You may assume integers are four bytes
and our values are word-aligned. What do the following snippets of RISC-V code do? Assume
that all the instructions are run one after the other in the same context.

a) lw t0, 12(s0)

Answer: Sets t0 equal to arr[3]

b) sw t0, 16(s0)

Answer: Stores t0 into arr[4]

c) slli t1, t0, 2

add t2, s0, t1
lw t3, 0(t2)
addi t3, t3, 1
sw t3, 0(t2)

Answer: Increments arr[4] by 1.

1st line sets t1 = 16

2nd line adds it to s0 so that it now points at arr[4]

3rd-5th line loads the value at arr[4], increments by one, and stores it back

4

Floating Point, RISC-V 5

d) lw t0, 0(s0)
xori t0, t0, 0xFFF
addi t0, t0, 1

Answer: Sets t0 to -1 * arr[0]

4 RISC-V Memory Access
Using the given instructions and the sample memory array, what will happen when the RISC-V
code is executed? For load instructions (lw, lb, lh), write out what each register will store. For
store instructions (sw, sh, sb), update the memory array accordingly. Recall that RISC-V is little-
endian and byte addressable. For any unknown instructions, use the CS 61C reference card!

4.1

li t0 0x00FF0000
lw t1 0(t0)
addi t0 t0 4
lh t2 2(t0)
lw s0 0(t1)
lb s1 3(t2)

0xFFFFFFFF
...

0x00FF0004 0x000C561C
0x00FF0000 36

...
0x00000036 0xFDFDFDFD

...
0x00000024 0xDEADB33F

...
0x0000000C 0xC5161C00

...
0x00000000

What value does each register hold after the code is executed?

t0: 0x00FF0004. Line 3 adds 4 to the initial address.

t1: 36. Line 2 loads the 4-byte word from address 0x00FF0000.

t2: 0xC. Line 4 loads two bytes starting at the address 0x00FF0004 + 2 = 0x00FF0006. This
returns 0x000C

s0: 0xDEADB33F. Line 5 loads the word starting at address 36 = 0x24 which is 0xDEADB33F.

s1: 0xFFFFFFC5. Line 6 loads the MSB starting of the 4-byte word at address 0xC. The value is
0xC5 which is sign-extended to 0xFFFFFFC5.

4.2 Update the memory array with its new values after the code is executed. Assume each byte in
the memory array is initialized to zero.

5

https://cs61c.org/sp25/pdfs/resources/reference-card.pdf

6 Floating Point, RISC-V

li t0 0xABADCAF8
li t1 0xF9120504
li t2 0xBEEFDAB0
sw t0 0(t1)
addi t0 t0 4
sh t1 2(t0)
sh t2 0(t0)
lw t3 0(t1)
sb t1 1(t3)
sb t2 3(t3)

0xFFFFFFFF 0x00000000
...

0xF9120504 0xABADCAF8
...

0xBEEFDAB0 0x00000000
...

0xABADCAFC 0x0504DAB0
0xABADCAF8 0xB0000400

...
0x00000000 0x00000000

5 Lost in Translation
5.1 Translate the code verbatim between C and RISC-V. The comments above the code indicate which

registers to store the variables.

These code snippets are a great reference for writing RISC-V code!

C RISC-V

// s0 -> a
// s1 -> b
// s2 -> c
// s3 -> z
int a = 4, b = 5, c = 6;
int z = a + b + c + 10;

addi s0, x0, 4
addi s1, x0, 5
addi s2, x0, 6
add s3, s0, s1
add s3, s3, s2
addi s3, s3, 10

// int *p = intArr;
// s0 -> p;
// s1 -> a;
*p = 0;
int a = 2;
p[1] = p[a] = a;

sw x0, 0(s0)
addi s1, x0, 2
sw s1, 4(s0)
slli t0, s1, 2
add t0, t0, s0
sw s1, 0(t0)

6

Floating Point, RISC-V 7

C RISC-V

// s0 -> a,
// s1 -> b
int a = 5;
int b = 10;
if (a + a == b) {
 a = 0;
} else {
 b = a - 1;
}

start:
 addi s0, x0, 5
 addi s1, x0, 10
 add t0, s0, s0
 bne t0, s1, else
 add s0, x0, x0
 jal x0, exit
else:
 addi s1, s0, -1
exit:
 ...

// Compute s1 = 2^30
int s0 = 0;
int s1 = 1;
for (; s0 != 30; s0 += 1) {
 s1 *= 2;
}

start:
 addi s0, x0, 0
 addi s1, x0, 1
 addi t0, x0, 30
loop:
 beq s0, t0, exit
 slli s1, s1, 1
 addi s0, s0, 1
 jal x0, loop
exit:
 ...

// s0 -> n
// s1 -> sum
for (int sum = 0; n > 0; n--){
 sum += n;
}

start:
 addi s1, x0, 0
loop:
 beq s0, x0, exit
 add s1, s1, s0
 addi s0, s0, -1
 jal x0, loop
exit:
 ...

7

	Floating Point
	More Floating Point
	RISC-V Instructions
	RISC-V Memory Access
	Lost in Translation

