
CS61C Floating Point, RISC-V
Summer 2025 Discussion 3

1 Floating Point
1.1 Convert the following single-precision floating point numbers from hexadecimal to decimal or

from decimal to hexadecimal using the IEEE 754 Floating Point Standard. You may leave your
answer as an expression.

a) 8.25

b) 39.5625

c) 0x00000F00

d) 0

e) 0xFF94BEEF

f) ∞

g) 1/3

1

2 Floating Point, RISC-V

2 More Floating Point
As we saw above, not every number can be represented perfectly using floating point. For this
question, we will only look at positive numbers.

2.1 What is the next smallest number larger than 2 that can be represented completely?

2.2 What is the next smallest number larger than 4 that can be represented completely?

2.3 What is the largest odd number that we can represent? Hint: at what power can we only represent
even numbers?

2

Floating Point, RISC-V 3

3 RISC-V Instructions
3.1 Assume we have an array in memory that contains int *arr = {1,2,3,4,5,6,0}. Let register

s0 hold the address of the element at index 0 in arr. You may assume integers are four bytes
and our values are word-aligned. What do the following snippets of RISC-V code do? Assume
that all the instructions are run one after the other in the same context.

a) lw t0, 12(s0)

b) sw t0, 16(s0)

c) slli t1, t0, 2

add t2, s0, t1
lw t3, 0(t2)
addi t3, t3, 1
sw t3, 0(t2)

d) lw t0, 0(s0)

xori t0, t0, 0xFFF
addi t0, t0, 1

3

4 Floating Point, RISC-V

4 RISC-V Memory Access
Using the given instructions and the sample memory array, what will happen when the RISC-V
code is executed? For load instructions (lw, lb, lh), write out what each register will store. For
store instructions (sw, sh, sb), update the memory array accordingly. Recall that RISC-V is little-
endian and byte addressable. For any unknown instructions, use the CS 61C reference card!

4.1

li t0 0x00FF0000
lw t1 0(t0)
addi t0 t0 4
lh t2 2(t0)
lw s0 0(t1)
lb s1 3(t2)

0xFFFFFFFF
...

0x00FF0004 0x000C561C
0x00FF0000 36

...
0x00000036 0xFDFDFDFD

...
0x00000024 0xDEADB33F

...
0x0000000C 0xC5161C00

...
0x00000000

What value does each register hold after the code is executed?

t0:

t1:

t2:

s0:

s1:

4

https://cs61c.org/sp25/pdfs/resources/reference-card.pdf

Floating Point, RISC-V 5

4.2 Update the memory array with its new values after the code is executed. Assume each byte in
the memory array is initialized to zero.

li t0 0xABADCAF8
li t1 0xF9120504
li t2 0xBEEFDAB0
sw t0 0(t1)
addi t0 t0 4
sh t1 2(t0)
sh t2 0(t0)
lw t3 0(t1)
sb t1 1(t3)
sb t2 3(t3)

0xFFFFFFFF 0x00000000
...

0xF9120504
...

0xBEEFDAB0
...

0xABADCAFC
0xABADCAF8

...
0x00000000 0x00000000

5

6 Floating Point, RISC-V

5 Lost in Translation
5.1 Translate the code verbatim between C and RISC-V. The comments above the code indicate which

registers to store the variables.

C RISC-V

// s0 -> a
// s1 -> b
// s2 -> c
// s3 -> z
int a = 4, b = 5, c = 6;
int z = a + b + c + 10;

// int *p = intArr;
// s0 -> p;
// s1 -> a;
*p = 0;
int a = 2;
p[1] = p[a] = a;

// s0 -> a,
// s1 -> b
int a = 5;
int b = 10;
if (a + a == b) {
 a = 0;
} else {
 b = a - 1;
}

// Compute s1 = 2^30
int s0 = 0;
int s1 = 1;
for (; s0 != 30; s0 += 1) {
 s1 *= 2;
}

6

Floating Point, RISC-V 7

C RISC-V

// s0 -> n
// s1 -> sum
for (int sum = 0; n > 0; n--){
 sum += n;
}

7

	Floating Point
	More Floating Point
	RISC-V Instructions
	RISC-V Memory Access
	Lost in Translation

