
CS61C RISC-V Calling Convention
Summer 2025 Discussion 4

1 Review: RISC-V Memory Access
Using the given instructions and the sample memory array, what will happen when the RISC-V
code is executed? For load instructions (lw, lb, lh), write out what each register will store. For
store instructions (sw, sh, sb), update the memory array accordingly. Recall that RISC-V is little-
endian and byte addressable. For any unknown instructions, use the CS 61C reference card!

1.1

li t0 0x00FF0000
lw t1 0(t0)
addi t0 t0 4
lh t2 2(t0)
lw s0 0(t1)
lb s1 3(t2)

0xFFFFFFFF
...

0x00FF0004 0x000C561C
0x00FF0000 36

...
0x00000036 0xFDFDFDFD

...
0x00000024 0xDEADB33F

...
0x0000000C 0xC5161C00

...
0x00000000

What value does each register hold after the code is executed?

t0:

t1:

t2:

s0:

s1:

1

https://cs61c.org/sp25/pdfs/resources/reference-card.pdf

2 RISC-V Calling Convention

1.2 Update the memory array with its new values after the code is executed. Assume each byte in
the memory array is initialized to zero.

li t0 0xABADCAF8
li t1 0xF9120504
li t2 0xBEEFDAB0
sw t0 0(t1)
addi t0 t0 4
sh t1 2(t0)
sh t2 0(t0)
lw t3 0(t1)
sb t1 1(t3)
sb t2 3(t3)

0xFFFFFFFF 0x00000000
...

0xF9120504
...

0xBEEFDAB0
...

0xABADCAFC
0xABADCAF8

...
0x00000000 0x00000000

2

RISC-V Calling Convention 3

2 RISC-V Calling Convention
2.1 Consider the following blocks of code:

main:
 # Prologue
 # Saves ra

 # Code omitted
 addi s0 x0 5
 # Breakpoint 1
 jal ra foo
 # Breakpoint 3
 mul a0 a0 s0
 # Code omitted

 # Epilogue
 # Restores ra
 j exit

foo:
 # Prologue
 # Saves s0

 # Code Omitted
 addi s0 x0 4
 # Breakpoint 2

 # Epilogue
 # Restores s0
 jr ra

a) Does main always behave as expected, as long as foo follows calling convention?

b) What does s0 store at breakpoint 1? Breakpoint 2? Breakpoint 3?

c) Now suppose that foo didn’t have a prologue or epilogue. What would s0 store at each of
the breakpoints? Would this cause errors in our code?

In part (c) above, we see one way how not following calling convention could make our code
misbehave. Other things to watch out for are: assuming that a or t registers will be the same
after calling a function, and forgetting to save ra before calling a function.

3

4 RISC-V Calling Convention

2.2 Function myfunc takes in two arguments: a0, a1. The return value is stored in a0. In myfunc,
generate_random is called. It takes in 0 arguments and stores its return value in a0.

myfunc:
Prologue (omitted)

addi t0 x0 1
slli t1 t0 2
add t1 a0 t1
add s0 a1 x0

jal generate_random

add t1 t1 a0
add a0 t1 s0

Epilogue (omitted)
ret

a) Which registers, if any, need to be saved on the stack in the prologue?

b) Which registers, if any, need to be saved on the stack before calling generate_random?

c) Which registers, if any, restored from the stack in the epilogue before returning?

4

RISC-V Calling Convention 5

3 Recursive Calling Convention
Write a function sum_squares in RISC-V that, when given an integer n and a constant m, returns
the summation below. If n is not positive, then the function returns m.

𝑚+ 𝑛2 + (𝑛 − 1)2 + (𝑛 − 2)2 +…+ 12

To implement this, we will use a tail-recursive algorithm that uses the a1 register to help with
recursion.

sum_squares_recursive: Return the value 𝑚+ 𝑛2 + (𝑛 − 1)2 +…+ 12

a0 A 32-bit number 𝑛. You may assume 𝑛 ≤ 10000.
Arguments

a1 A 32-bit number 𝑚.
Return value a0 𝑚+ 𝑛2 + (𝑛 − 1)2 + (𝑛 − 2)2 +…+ 12. If 𝑛 ≤ 0, return 𝑚

For this problem, you are given a RISC-V function called square that takes in a single integer and
returns its square.

square: Squares a number
Arguments a0 𝑛
Return value a0 𝑛2

3.1 Since this a recursive function, let’s implement the base case of our recursion:

sum_squares:
________________ zero_case

To be implemented in the next question

zero_case:

jr ra

3.2 Next, implement the recursive logic. Hint: if you let 𝑚′ = 𝑚+ 𝑛2, then

𝑚+ 𝑛2 + (𝑛 − 1)2 +…+ 12 = 𝑚′ + (𝑛 − 1)2 +…+ 12

5

6 RISC-V Calling Convention

sum_squares:
Handle zero case (previous question)
_________________ zero_case

mv t0 a0
jal ra _________________

add a1 a0 a1
addi a0 t0 -1

jal ra _________________
jr ra

zero_case:
Handle zero case (previous question)
jr ra

3.3 Now, think about calling convention from the caller perspective. After the call to square, what
is in a0 and a1? Which one of the registers will cause a calling convention violation?

3.4 What about the recursive call? What will be in a0 and a1 after the call to sum_squares?

6

RISC-V Calling Convention 7

3.5 Now, go back and fix the calling convention issues you identified. Note that not all blank lines
may be used. There may also be another caller saved register that you need to save as well!

sum_squares:
Handle zero case (previous question)
mv t0 a0

(previous question)
jal ra _________________

add a1 a0 a1
addi a0 t0 -1

(previous question)
jal ra _________________

jr ra
zero_case:
Handle zero case (previous question)
jr ra

3.6 Now, from a callee perspective, do we have to save any registers in the prologue and epilogue?
If yes, what registers do we have to save, and where do we place the prologue and epilogue? If
no, briefly explain why.

7

	Review: RISC-V Memory Access
	RISC-V Calling Convention
	Recursive Calling Convention

